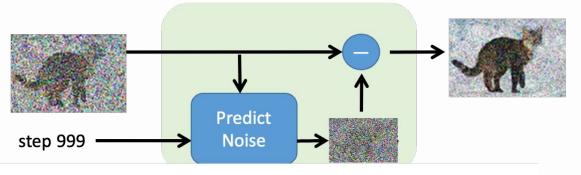


Diffusion Model


-based Generative Recommendation

What is Diffusion

Build the mapping between data sample and Gaussian sample

What is Diffusion

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_\theta \left\ \epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon, t) \right\ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: $\mathbf{for} \ t = T, \dots, 1 \ \mathbf{do}$ 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I}) \ \text{if} \ t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: $\mathbf{end} \ \mathbf{for}$ 6: $\mathbf{return} \ \mathbf{x}_{0}$

Remove the noise step by step from a Gaussian sample.

Diffusion in CV Diffusion is at the core of visual content generation.

Image generation

Stable Diffusion, DALL-E...

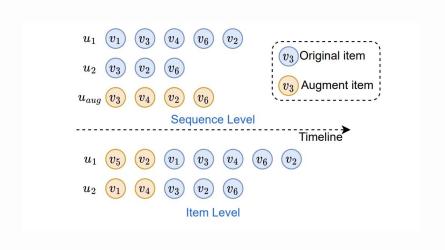
Video generation

Sora, Hunyuan-Video, Keling...

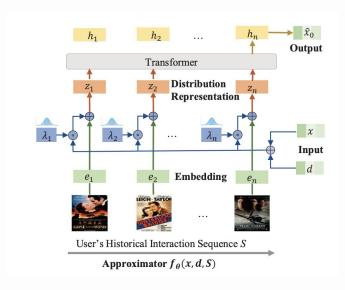
Diffusion for recommendation

Use diffusion to enhance traditional recommender

- More robust representation
- Data augmentation

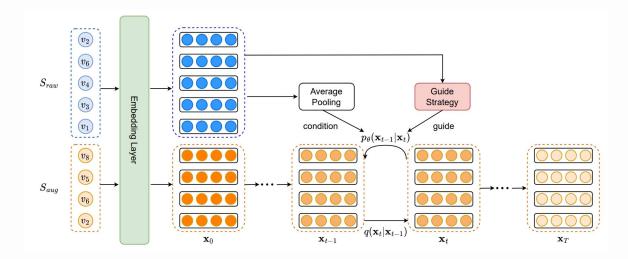

Diffusion as recommender

- Diffuse on the user interaction vector
- Diffuse on item representation
- Discrete diffusion

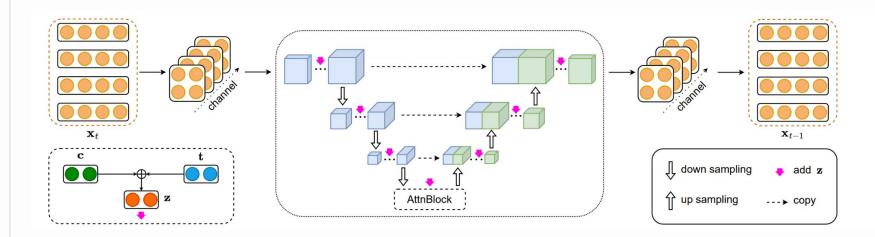

Diffusion for personalized content generation

Personalized try-on, image,....

Diffusion as enhancer


Generate more interaction or sequences

Enhance the robustness of embeddings


Pseudo sequence generation (I)

Generate pseudo sequence embeddings conditioned on historical interaction sequence

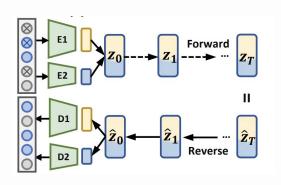
Pseudo sequence generation (II)

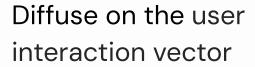
The model architecture is adopted from U-Net

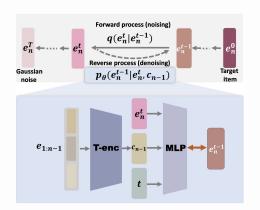
Diffusion for recommendation

Use diffusion to enhance traditional recommender

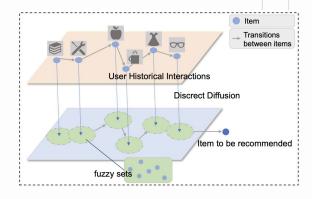
- More robust representation
- Data augmentation


Diffusion as recommender

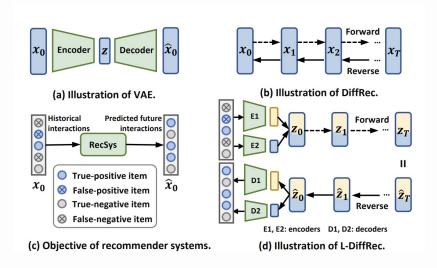

- Diffuse on the user interaction vector
- Diffuse on item representation
- Discrete diffusion


Diffusion for personalized content generation

- Personalized try-on, image,....

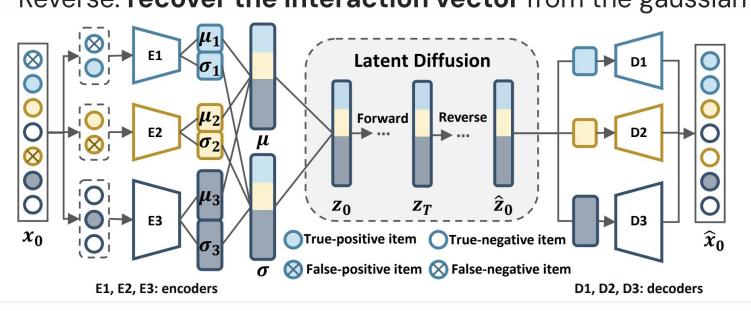

Diffusion as recommender

Diffuse on item representation

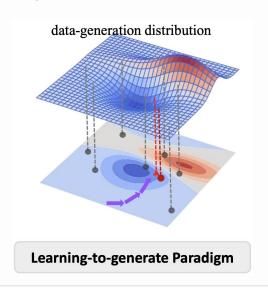


Discrete diffusion

Interaction vector completion (I)


Motivation - limitation of GANs and VAEs:

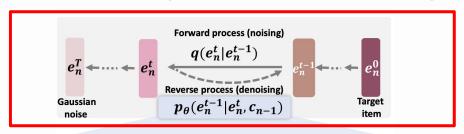
GAN- and VAE-based recommenders suffers from issues like instability and representation collapse.



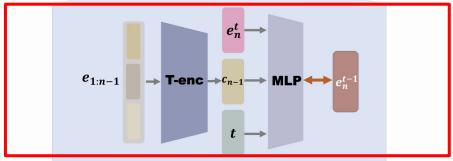
Interaction vector completion (II)

Forward: **corrupt the interaction vector** into gaussian noise Reverse: **recover the interaction vector** from the gaussian

There exists an implicit distribution, from which target item embedding can be generated.

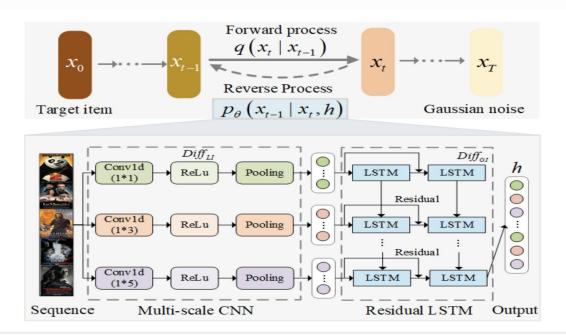

Challenge:

 The data-generation distribution is complicated and unknown.

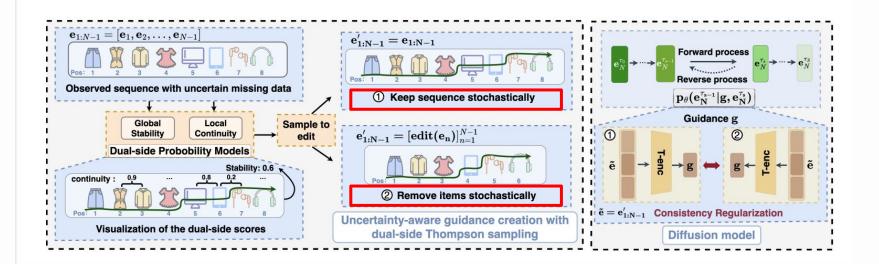

Solution:

- Capture the data-generation distribution by connecting it with Gaussian distribution.
- This can be achieved by diffusion.

- Diffusion on target item embeddings.
- Guided by user interaction sequence for personalization.



Diffusion process

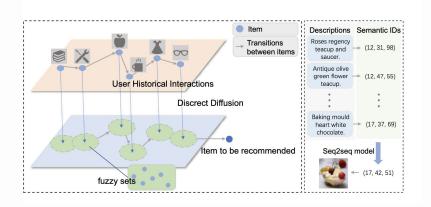


Guidance

Different sequence encoder

Uncertainty-aware guidance

Incorporate preference optimization


$$\mathcal{L}_{ ext{Simple}} = \mathbb{E}_{(\mathbf{e}_0^+, \mathbf{c}, t)} \left[\left\| \mathcal{F}_{ heta}(\mathbf{e}_t^+, t, \mathcal{M}(\mathbf{c})) - \mathbf{e}_0^+
ight\|_2^2
ight] \, ,$$

$$\mathcal{L}_{\text{BPR-Diff-C}} = -\log \sigma(-|\mathcal{H}| \cdot [S(\hat{\mathbf{e}}_0^+, \mathbf{e}_0^+) - S(\mathcal{F}_{\theta}(\bar{\mathbf{e}}_t^-, t, \mathcal{M}(\mathbf{c})), \bar{\mathbf{e}}_0^-)]).$$

$$\mathcal{L}_{PerferDiff} = \underbrace{\lambda \mathcal{L}_{Simple}}_{Learning \ Generation} + \underbrace{(1 - \lambda) \mathcal{L}_{BPR-Diff-C}}_{Learning \ Preference}.$$

Discrete diffusion

State transitions occur under discrete conditions for the entire interaction sequence.

- Represent interaction sequence as one-hot vector through semantic ID.
- Conduct discrete diffusion on interaction sequence.

Discrete diffusion

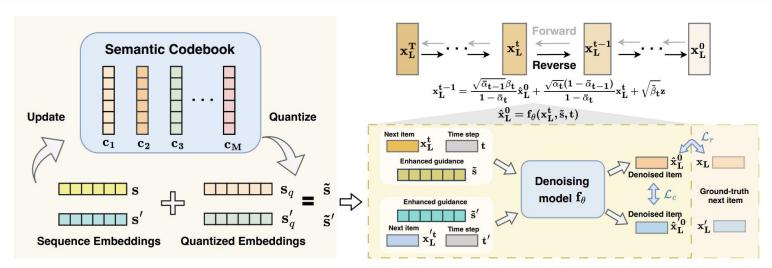
Semantic IDs

Algorithm 1 Training of DDSR.

Input: historical interaction sequence $v_{1:n-1} = c_{1:n-1;1:m}$; target i em $v_n = c_{n;1:m}$; transition matrix Q_t ; Approximator $f_{\theta}(\cdot)$.

Output: well-trained Approximator $f_{\theta}(\cdot)$. While not converged do:

Forward process


- 1: Sample Diffusion Time: $t \sim [0, 1, \dots, T]$;
- 1: Sample Diffusion Time: $t \sim [0, 1, \dots, T];$ 2: Calculate t-step transition probability: $\overline{Q_t} = Q_1 Q_2 \cdots Q_t;$ $[Q]_{ij} = \begin{cases} (1-\beta_t)/(|\mathcal{V}|-1) & \text{if } i \neq j \\ \beta_t & \text{if } i = j \end{cases}$
- 3: Convert $c_{n;1:m}$ to one-hot encoding $\boldsymbol{x}_{n:1:m}^0$;
- 4: Obtain the discrete state $x_{n:1:m}^t$ after t steps by Equation 2, thereby obtaining the 'fuzzy set' $c_{1:n-1:1:m}^t;$
- 5: Modeling $c_{2:n:1:m}$ based on 'fuzzy sets' through Equation 5;

$$\hat{c}_{2:n;1:m} = f_{\theta}(c_{1:n-1:1:m}^t, t).$$

6: Take gradient descent step on ∇L_{CE} ($\hat{c}_{2:n:1:m}, c_{2:n:1:m}$).

Discrete diffusion

Quantization embedding with continuous diffusion.

Semantic Vector Quantization

Contrastive Discrepancy Maximization

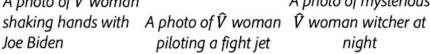
Diffusion for recommendation

Use diffusion to enhance traditional recommender

- More robust representation
- Data augmentation

Diffusion as recommender

- Diffuse on the user interaction vector
- Diffuse on item representation
- Discrete diffusion

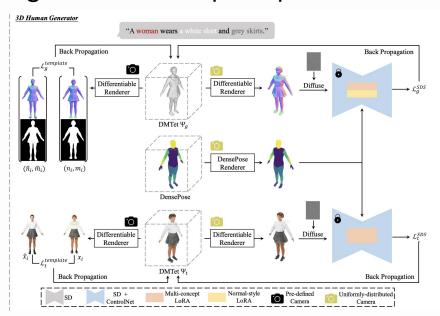

Diffusion for personalized content generation

- Personalized try-on, image,....

Personalized content generation

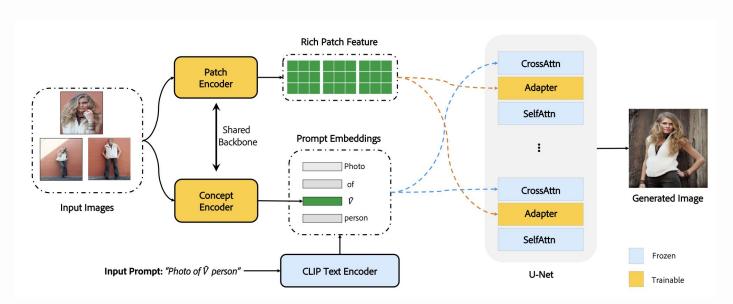
A photo of \hat{V} woman Joe Biden

A photo of mysterious night



Personalized try-on

Personalized image


Personalized Try-on

Generate realistic 3D try-on given person images, clothes images, and a text prompt.

Personalized Image

Generate personalized image given person images and the desired concept.

