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-based Generative Recommendation
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The Rise of Large Language Models
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LLMs are developing so fast recently…

arXiv.2303.18223

Transformer

2017

O3, R1…

2025



Large Language Models
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LLMs are machine learning models that can perform a 
variety of natural language processing (NLP) tasks 

Translation Chat Bot

Code Generation Text Editing



Large Language Models
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Key features of LLMs:

- World knowledge.
- Natural language understanding.
- Human-like behavior. 



Large Language Models
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How can these features benefit recommender systems?

Key features of LLMs:

- World knowledge.
- Natural language understanding.
- Human-like behavior. 
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Benefits of LLMs for Recommendation

(1) World knowledge - from pretraining 

In space In recommendation

Gurnee et al. Language Models Represent Space and Time. ICLR 2024.
Sheng et al. Language Representations Can be What Recommenders Need: Findings and Potentials. ICLR 2025.
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Benefits of LLMs for Recommendation

(1) World knowledge 

LLM as sequential recommender

-> Alleviating the data sparsity of ID-based 
interactions in recommendation



(1) World knowledge 
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Example: SASRec [ICDM’18]

ID-based item modeling 
lack semantic meanings

Benefits of LLMs for Recommendation

Next ID 
prediction

Item IDs



(1) World knowledge 
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Benefits of LLMs for Recommendation

Abundant prior 
knowledge about items



(1) World knowledge 
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Benefits of LLMs for Recommendation

Few data -> a good 
recommender



(1) World knowledge 
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Benefits of LLMs for Recommendation

Lower data requirement
Cross-domain ability
Cold-start ability
…

LLM as sequential 
recommender
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Benefits of LLMs for Recommendation

(2) Natural language understanding & generation

LLMs can interact 
with users fluently 
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Benefits of LLMs for Recommendation

(2) Natural language understanding & generation

LLM as conversational recommender

-> Towards more interactive recommender systems



(2) Natural language understanding & generation
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Benefits of LLMs for Recommendation

User History

Prediction Traditional RecSys



(2) Natural language understanding & generation
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Benefits of LLMs for Recommendation

User History

Prediction

Click, like

Recommendation

Traditional RecSys



(2) Natural language understanding & generation
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Benefits of LLMs for Recommendation

User History

Prediction

Recommendation

Traditional RecSys

Passive recommendation!

Click, like



(2) Natural language understanding & generation
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Benefits of LLMs for Recommendation

Recommendation

Conversation

I would like to 
recommend…

Some scientific 
movies.

Click, like



(2) Natural language understanding & generation
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Benefits of LLMs for Recommendation

Interactive
User-friendly
More accurate
…

LLM as conversational 
recommender



(3) Human-like behavior 

30

Benefits of LLMs for Recommendation

Park et al. Generative Agents: Interactive Simulacra of Human Behavior. UIST 2023



(3) Human-like behavior 
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Benefits of LLMs for Recommendation

Generative Agents can 
(mostly) simulate human 
behaviors
- Cooperation
- Organization

Park et al. Generative Agents: Interactive Simulacra of Human Behavior. UIST 2023



(3) Human-like behavior 

LLM as user simulator

-> Simulating user behaviors for evaluating recommenders.

32

Benefits of LLMs for Recommendation



(3) Human-like behavior 
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Benefits of LLMs for Recommendation

Offline recommender evaluation

Inaccurate, but 
affordable



(3) Human-like behavior

Online recommender evaluation

34

Benefits of LLMs for Recommendation

Accurate, but 
costly



(3) Human-like behavior 
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Benefits of LLMs for Recommendation

Faithful
Affordable
Controllable
…

LLM as user simulator

Zhang et al. On Generative Agents in Recommendation. SIGIR 2024



Part 1: LLM as Sequential Recommender
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(i) Early efforts: Pretrained LLMs for recommendation;
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Early efforts

● Directly use freezed LLMs (e.g., GPT 4) for 
recommendation.
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Early efforts

Prompt Engineering + In-Context Learning (ChatRec)

Gao et al. Chat-REC: Towards Interactive and Explainable LLMs-Augmented Recommender System. arXiv 2303.14524.

Key idea: LLMs as the recsys controller
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Early efforts

Prompt Engineering + In-Context Learning (LLMRank)

Hou et al. Large Language Models are Zero-Shot Rankers for Recommender Systems. ECIR 2024.

Key idea: LLMs as the reranker
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Early efforts

● Directly use freezed LLMs (e.g., GPT 4) for 
recommendation.

● A performance gap compared to traditional 
recommenders exists.
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Early efforts

Hou et al. Large Language Models are Zero-Shot Rankers for Recommender Systems. ECIR 2024.

Sub-optimal performance comparing to SASRec!
Performance of LLMRank
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Early efforts

Hou et al. Large Language Models are Zero-Shot Rankers for Recommender Systems. ECIR 2024.

Aligning LLMs for recommendation tasks is necessary!

Sub-optimal performance comparing to SASRec!



Part 1: LLM as Sequential Recommender
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(i) Early efforts: Pretrained LLMs for recommendation;
(ii) Aligning LLMs for recommendation;
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Aligning LLMs for recommendation

+ Collaborative embeddings

+ Multimodal information+ External item tokens

Pure text-based
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Aligning LLMs for recommendation

+ Collaborative embeddings

+ Multimodal information+ External item tokens

Pure text-based



(1) Pure text-based (TALLRec)
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Aligning LLMs for recommendation

Bao et al. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. RecSys 2023.

Pretrained LLMs for CTR 
prediction?
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Aligning LLMs for recommendation

(1) Pure text-based (TALLRec)

Bao et al. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. RecSys 2023.

Pretrained LLMs:

Random Guess!
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Aligning LLMs for recommendation

(1) Pure text-based (TALLRec)

Bao et al. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. RecSys 2023.

General task alignment -> Recommendation alignment
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Aligning LLMs for recommendation

(1) Pure text-based (TALLRec)

Bao et al. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. RecSys 2023.

Few training data -> Huge improvements
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Aligning LLMs for recommendation

(1) Pure text-based (TALLRec)

Bao et al. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. RecSys 2023.

Traditional recommenders: suffer from too-sparse 
supervision signals
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Aligning LLMs for recommendation

(1) Pure text-based (TALLRec)

Bao et al. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. RecSys 2023.

Cross-domain generalization
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Aligning LLMs for recommendation

(1) Pure text-based - Multiple rec taks

Raffel et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. JMLR 2020.

Unified language 
modeling in NLP
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Aligning LLMs for recommendation

Geng et al. Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). RecSys 2022.

Multi-task alignment (P5)

-> general recommender

(1) Pure text-based - Multiple rec taks
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Aligning LLMs for recommendation

Geng et al. Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). RecSys 2022.

Training on different task 
prompts -> multiple 
recommendation abilities. 

(1) Pure text-based - Multiple rec taks



55

Aligning LLMs for recommendation

Geng et al. Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). RecSys 2022.

Single LLM -> Effective on various recommendation tasks

(1) Pure text-based - Multiple rec taks
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Aligning LLMs for recommendation

(1) Pure text-based (P5)

Jiang et al. Large Language Models Are Universal Recommendation Learners. arXiv: 2502.03041.

URM: 

Unify recommendation & search
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Aligning LLMs for recommendation

+ Collaborative embeddings

+ Multimodal information+ External item tokens

Pure text-based
Is textual information enough for alignment?
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Aligning LLMs for recommendation

+ Collaborative embeddings

+ Multimodal information+ External item tokens

Pure text-based
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Aligning LLMs for recommendation

(2) + Collaborative embeddings

Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019.

Motivation:

Language modeling may not 
capture collaborative 
information
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Aligning LLMs for recommendation

(2) + Collaborative embeddings

Solution:

Aligning LLMs with 
embeddings from 
traditional recommenders
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Aligning LLMs for recommendation

(2) + Collaborative embeddings (LLaRA)

Liao et al. LLaRA: Large Language-Recommendation Assistant. SIGIR 2024.

+ Pretrained item embeddings
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Aligning LLMs for recommendation

(2) + Collaborative embeddings (LLaRA)

Liao et al. LLaRA: Large Language-Recommendation Assistant. SIGIR 2024.

+ Pretrained item embeddings
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Aligning LLMs for recommendation

(2) + Collaborative embeddings (CoLLM)

Zhang et al. CoLLM: Integrating Collaborative Embeddings Into Large Language Models for Recommendation. TKDE 2025.

+ Pretrained item embeddings + user embeddings



64

Aligning LLMs for recommendation

(2) + Collaborative embeddings (E4SRec)

Li et al. E4SRec: An Elegant Effective Efficient Extensible Solution of Large Language Models for Sequential Recommendation. WWW 2024.

Discard text; 

Collaborative embeddings only

KNN for inference
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Aligning LLMs for recommendation

+ Collaborative embeddings

+ Multimodal information+ External item tokens

Pure text-based



66

Aligning LLMs for recommendation

(3) + External item tokens 

Hua et al. How to Index Item IDs for Recommendation Foundation Models. SIGIR-AP 2023

Motivation:

Tokens for language 
modeling are not optimal 
for recommendation.

Harry Potter

Tokenizer

Harry Potter
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Aligning LLMs for recommendation

(3) + External item tokens 

Hua et al. How to Index Item IDs for Recommendation Foundation Models. SIGIR-AP 2023

Motivation:

Tokens for language 
modeling are not optimal 
for recommendation.

Harry Potter

Tokenizer

Harry Potter

Maybe better?
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Aligning LLMs for recommendation

(3) + External item tokens (CLLM4Rec) 

Zhu et al. Collaborative Large Language Model for Recommender Systems. WWW 2024.

Naive approach:

One ID for each item



(3) + External item tokens (LC-Rec) 
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Aligning LLMs for recommendation

Zheng et al. Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation. ICDE 2024.

+ Semantic IDs

(Similar items 
have similar IDs)
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Aligning LLMs for recommendation

(3) + External item tokens 

Hua et al. How to Index Item IDs for Recommendation Foundation Models. SIGIR-AP 2023

More complicated item tokens design
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Aligning LLMs for recommendation

+ Collaborative embeddings

+ Multimodal information+ External item tokens

Pure text-based
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Aligning LLMs for recommendation

(4) + Multimodal information 

Motivation:

Human make decisions with 
multimodal information.
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Aligning LLMs for recommendation

(4) + Multimodal information 

Motivation:

Post-trained LLM can 
understand multimodal 
information

 Qwen2.5-Omni Technical Report.
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Aligning LLMs for recommendation

(4) + Multimodal information 

Liu et al. Visual Instruction Tuning. NeurIPS 2023.

Aligning vision and 
language with a projector
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Aligning LLMs for recommendation

(4) + Multimodal information (VIP5)

Gen et al. VIP5: Towards Multimodal Foundation Models for Recommendation. EMNLP 2023 (Findings).

Diff between P5:

Pair text with its image
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Aligning LLMs for recommendation

(4) + Multimodal information (VIP5)

Gen et al. VIP5: Towards Multimodal Foundation Models for Recommendation. EMNLP 2023 (Findings).

Alignment with 
projector
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Aligning LLMs for recommendation

(4) + Multimodal information (VIP5)

Gen et al. VIP5: Towards Multimodal Foundation Models for Recommendation. EMNLP 2023 (Findings).

Multimodal information is important
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Aligning LLMs for recommendation

+ Collaborative embeddings

+ Multimodal information+ External item tokens

Pure text-based
Information tailored for recommendation matters!



Part 1: LLM as Sequential Recommender
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(i) Early efforts: Pretrained LLMs for recommendation;
(ii) Aligning LLMs for recommendation;
(iii) Training objective & inference
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Training objective

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, … Gone with 
the wind. Predict the next movie I will watch: 



(1) Supervised finetuning (SFT)
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Training objective

I have watched Titanic, Roman Holiday, … Gone with 
the wind. Predict the next movie I will watch: 

Waterloo Bridge.

Prediction



(1) Supervised finetuning (SFT)
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Training objective

I have watched Titanic, Roman Holiday, … Gone with 
the wind. Predict the next movie I will watch: 

Waterloo Bridge.

Prediction



(1) Supervised finetuning (SFT)
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Training objective

Always predict the next token



(2) Preference learning
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Training objective

LLMs are trained to align 
human preferences

Recommendation is about 
user preferences



(2) Preference learning
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Training objective

I have watched Titanic, Roman Holiday, … Gone with 
the wind. Predict the next movie I will watch: 

Waterloo Bridge Harry Potter

Rafailov et al. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. NeurIPS 2023.



(2) Preference learning
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Training objective

I have watched Titanic, Roman Holiday, … Gone with 
the wind. Predict the next movie I will watch: 

Waterloo Bridge Harry Potter

Direct Preference Optimization!

Rafailov et al. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. NeurIPS 2023.



(2) Preference learning
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Training objective

Multiple negativesSingle negative

Chen et al. On Softmax Direct Preference Optimization for Recommendation. NeurIPS 2024.
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Training objective

(2) Preference learning

Chen et al. On Softmax Direct Preference Optimization for Recommendation. NeurIPS 2024.
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Training objective

(3) Reinforce learning

DeepSeek-AI et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv: 2501.12948.

Emergent reasoning 
capabilities through RL
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Training objective

(3) Reinforce learning

Lin et al. Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning. arXiv: 2503.24289v1.

Maximize the reward from 
recommender system
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Inference

(1) Beam Search

Generating answers with the 
top-k highest scored beams
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Inference

(1) Beam Search

It may generate invalid items

In RecSys : 
No Hallucination permitted!
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Valid items: 
Waterloo Bridge, Waterfall 
Story, and Waterloo War

How to make the generated 
items always valid?

Inference

(2) Constrained Beam Search
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Water

Bridge

loo fall

War

Valid items: 
Waterloo Bridge, Waterfall 
Story, and Waterloo War

Constrained search tree

Inference

(2) Constrained Beam Search



(2) Constrained Beam Search
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WaterI have watched Titanic, Roman Holiday, … 
Gone with the wind. Predict the next movie 

I will watch: 

P = 1

Inference
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Water

loo fall

P = 0.8 P = 0.2
I have watched Titanic, Roman Holiday, … 

Gone with the wind. Predict the next movie 
I will watch: 

P = 1

Inference

(2) Constrained Beam Search
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Water

Bridge

loo fall

War

P = 0.8 P = 0.2

P = 0.9 P = 0.1

I have watched Titanic, Roman Holiday, … 
Gone with the wind. Predict the next movie 

I will watch: 

P = 1

Inference

(2) Constrained Beam Search
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Water

Bridge

loo fall

War

P = 0.8 P = 0.2

P = 0.9 P = 0.1

I have watched Titanic, Roman Holiday, … 
Gone with the wind. Predict the next movie 

I will watch: 

P = 1

Valid Item!

Inference

(2) Constrained Beam Search



(3) Special design
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Length penalty in beam search;
Human does not like over long sentences.

Inference

Redundant for recommendation

Bao et al. Decoding Matters: Addressing Amplification Bias and Homogeneity Issue for LLM-based Recommendation. EMNLP 2024.



(3) Special design
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Remove length penalty

Imp when removing

Inference

Bao et al. Decoding Matters: Addressing Amplification Bias and Homogeneity Issue for LLM-based Recommendation. EMNLP 2024.



Part 1: LLM as Sequential Recommender
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(i) Early efforts: Pretrained LLMs for recommendation;
(ii) Aligning LLMs for recommendation;
(iii) Training objective & inference
(iiii) Efficiency
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Efficiency

A crucial question in real-world deployment
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Efficiency

A crucial question in real-world deployment

Training efficiency:

LLM: update by months

Recommender: update by hours 
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Efficiency

A crucial question in real-world deployment

Inference efficiency:

LLM: wait for seconds

Recommender: wait for milliseconds
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Efficiency

A crucial question in real-world deployment

Model-size efficiency:

LLM: serve for millions

Recommender: serve for billions
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Efficiency

(1) Training efficiency

Zhou et al. LIMA: Less Is More for Alignment. NeurIPS 2023.

Less is more for alignment

1k high quality examples ->

Surpass large scale training
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Efficiency

(1) Training efficiency

Lin et al. Data-efficient Fine-tuning for LLM-based Recommendation. SIGIR 2024.

Select the most informative 
examples ->

Reducing 95% training time
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Efficiency

(2) Inference efficiency

Lin et al. Efficient Inference for Large Language Model-based Generative Recommendation. ICLR 2025.

Autoregressive paradigm in LLM

-> huge time on the decoding stage
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Efficiency

(2) Inference efficiency

Lin et al. Efficient Inference for Large Language Model-based Generative Recommendation. ICLR 2025.

Speculative decoding:

Decoder acceleration with a 
small-size draft model
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Efficiency

(3) Model-size efficiency - Pruning

Ma et al. LLM-Pruner: On the Structural Pruning of Large Language Models. NeurIPS 2023
Cui et al. M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems. arXiv: 2205.08084.

Similar performance with 

0.6% parameters
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Efficiency

(3) Model-size efficiency - Distillation

Xu et al..SLMRec: Distilling Large Language Models into Small for Sequential Recommendation. ICLR 2025.

SLM learns from LLM

With Hard label + soft label
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Efficiency

(3) Model-size efficiency - Distillation

Xu et al..SLMRec: Distilling Large Language Models into Small for Sequential Recommendation. ICLR 2025.

Reduced model-size;

Reduced inference time



Part 1: LLM as Sequential Recommender
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(1) Early efforts: pretrained LLMs for rec 

(2) Aligning LLMs for recommendation
- Pure text-based           - Collaborative embeddings
- External item tokens    - Multimodal information

(3) Training objective & inference
Training: SFT, DPO, RL;         Inference: (constrained) beam search

(4) Efficiency
Data efficiency; Inference efficiency; Model-size efficiency



Part 2: LLM as Conversational Recommender
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Conversational Recommender System (CRS)

Chen et al. All Roads Lead to Rome: Unveiling the Trajectory of Recommender Systems  Across the LLM Era. arXiv.2407.10081

● Recommendations with multiple turns conversation
● Interactive; engaging users in the loop
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Attribute-based 

Paradigms of CRS before the era of LLM

Wang et al. Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models. EMNLP 2023.
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Attribute-based Free-form

Paradigms of CRS before the era of LLM

Wang et al. Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models. EMNLP 2023.



Features: Task-specific conversational recommenders, 
trained on limited conversation data.
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Paradigms of CRS before the era of LLM



Features: Task-specific conversational recommenders, 
trained on limited conversation data.

● Lack of world knowledge.
● Requirement of complicated strategies.
● Incompatible natural language generation abilities.
● Lack of generalization capabilities.

119

Paradigms of CRS before the era of LLM
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Paradigms of CRS before the era of LLM

Chen et al. Towards Knowledge-Based Recommender Dialog System. EMNLP 2019.

Traditional CRS: KBRD

● End-to-end conversational 
recommender system

● Switching between conversation 
and recommendation

● External knowledge from 
knowledge graph



LLM as conversational recommender
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Example

https://www.amazon.com/Rufus/
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LLM as Conversational Recommender

Framework (RecLLM)

Friedman et al. Leveraging Large Language Models in Conversational Recommender Systems. arXiv:2305.07961.

Conversation with users 
via LLMs
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LLM as Conversational Recommender

Framework (RecLLM)

Friedman et al. Leveraging Large Language Models in Conversational Recommender Systems. arXiv:2305.07961.

Recommendation 
via tools
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LLM as Conversational Recommender

Framework (RecLLM)

Friedman et al. Leveraging Large Language Models in Conversational Recommender Systems. arXiv:2305.07961.

Fine-grained 
reranking via LLMs
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LLM as Conversational Recommender

Framework (RecLLM)

Friedman et al. Leveraging Large Language Models in Conversational Recommender Systems. arXiv:2305.07961.

Evaluation via LLMs
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LLM as Conversational Recommender

LLMs as zero-shot CRS

He et al. Large Language Models as Zero-Shot Conversational Recommenders. CIKM 2023.

How powerful are LLMs for zero-shot CRS?
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LLM as Conversational Recommender

LLMs as zero-shot CRS

He et al. Large Language Models as Zero-Shot Conversational Recommenders. CIKM 2023.

Can surpass traditional CRSs!
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LLM as Conversational Recommender

LLMs as zero-shot CRS

He et al. Large Language Models as Zero-Shot Conversational Recommenders. CIKM 2023.

Can surpass traditional CRSs!

Towards better LLM-based CRS?
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LLM as Conversational Recommender

+ Demonstration

Dao et al. Broadening the View: Demonstration-augmented Prompt Learning for Conversational Recommendation. SIGIR 2024.

Prompting with 
previously successful 
conversation

Relevant conversation 
history helps!
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LLM as Conversational Recommender

+ Knowledge graph

Qiu et al. Unveiling User Preferences: A Knowledge Graph and LLM-Driven Approach for Conversational Recommendation. arXiv:2411.14459

Recommendation-spe
cific knowledge graph 
helps
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LLM as Conversational Recommender

+ Collaborative information

He et al. Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation. WSDM 2025.

Collaborative information 
(e.g., popularity) helps LLMs 
fit the real distribution in CRS
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LLM as Conversational Recommender

Challenges - Datasets

Public datasets for CRS are limited, due to the 
scarcity of conversational products and real-world 
CRS datasets



133

LLM as Conversational Recommender

Challenges - Evaluation

Traditional metrics like NDCG and BLEU are often 
insufficient to assess user experience
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LLM as Conversational Recommender

Challenges - Product

What is the form of LLM-based CRS products?

ChatBot? Search bar? Independent App?
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Part 2: LLM as Conversational Recommender

(1) LLMs show potential in CRS

(2) LLM-based CRS can be improved with:

demonstration, collaborative information …

(3) Challenges in LLM-based CRSs:

dataset, evaluation, and product



Part 3: LLM as User Simulator
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RL-based user simulator 

User simulators before the era of LLM

High sampling cost
Overfitting risks
Training instability
Limited action space
…

Shi et al. Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforcement Learning. AAAI 2019.
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Generative agents

LLM as User Simulator

Xi et al.The Rise and Potential of Large Language Model Based Agents: A Survey. arXiv: 2309.07864.

Perception

Planning

Memory

Action

…
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Generative agents for recommendation

LLM as User Simulator

Human-like behavior
Abundant action space
Reduced training cost
…

Zhang et al. On generative agents in recommendation. SIGIR 2024.
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Generative agents for recommendation

LLM as User Simulator

Realworld-like 
simulation paradigm

● 1000 users
● Page-by-page 

simulation

Zhang et al. On generative agents in recommendation. SIGIR 2024.
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Generative agents for recommendation

LLM as User Simulator

Realworld-like 
simulation paradigm

● 1000 users
● Page-by-page 

simulation

Zhang et al. On generative agents in recommendation. SIGIR 2024.
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Generative agents for recommendation

LLM as User Simulator

Realworld-like 
simulation paradigm

● 1000 users
● Page-by-page 

simulation

Zhang et al. On generative agents in recommendation. SIGIR 2024.
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Generative agents for recommendation

LLM as User Simulator

Aligned user preferences
& Recommender evaluation

Zhang et al. On generative agents in recommendation. SIGIR 2024.
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Generative agents for recommendation

LLM as User Simulator

Aligned user preferences
& Recommender evaluation

Zhang et al. On generative agents in recommendation. SIGIR 2024.

How to make the simulation more faithful?



145

+ Social behaviors

LLM as User Simulator

Wang et al. When Large Language Model based Agent Meets User Behavior Analysis: A Novel User Simulation Paradigm. TOIS 2025.

Recommendation
Chat
Networking
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+ Multiturn conversation

LLM as User Simulator

Liang et al. LLM-REDIAL: A Large-Scale Dataset for Conversational Recommender Systems Created from User Behaviors with LLMs. ACL 2024.

Simulating users in 
the conversational 
scenarios
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+ Multi-facet simulation objective

LLM as User Simulator

Zhang et al. LLM-Powered User Simulator for Recommender System. AAAI 2025.

Category matching
Fine-grained similarity
Statistic information
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LLM as User Simulator

Reliable environment for 
RL-based recommenders

+ Multi-facet simulation objective

Zhang et al. LLM-Powered User Simulator for Recommender System. AAAI 2025.



(1) RL-based simulators are limited in 
action space, action space, and training instability

(2) LLMs open up a new paradigm for simulating users

(3) They can give feedback for RL-based recommenders

(4) Challenges:
scaling, training, industry deployment

149

Part 3: LLM as User Simulator


