

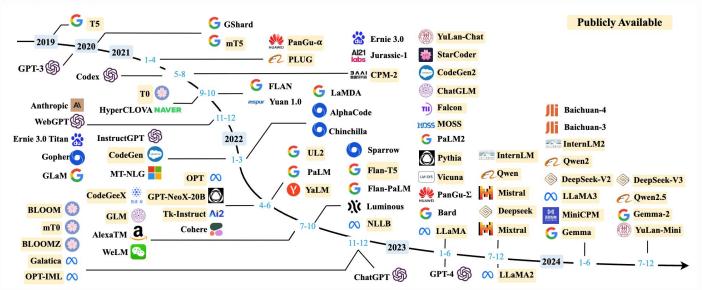
LLM

-based Generative Recommendation

The Rise of Large Language Models

Transformer

2017



O3, R1...

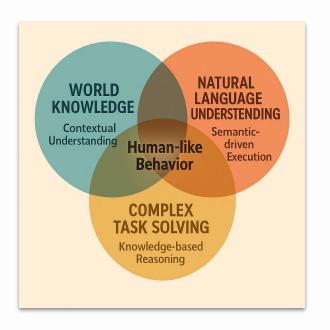
2025

LLMs are developing so fast recently...

Large Language Models

LLMs are machine learning models that can perform a variety of natural language processing (NLP) tasks

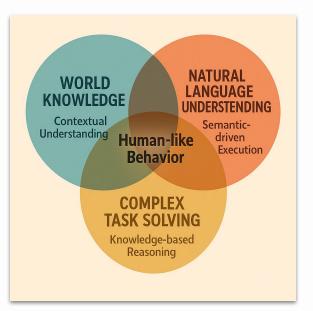
Large Language Models



Key features of LLMs:

- World knowledge.
- Natural language understanding.
- Human-like behavior.

Large Language Models

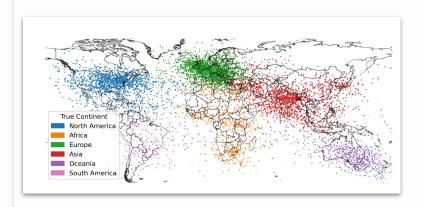


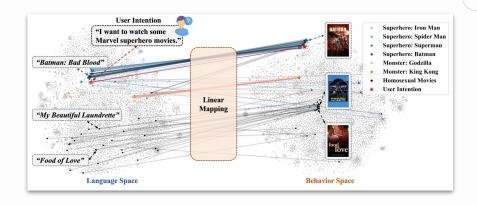
Key features of LLMs:

- World knowledge.
- Natural language understanding.
- Human-like behavior.

How can these features benefit recommender systems?

(1) World knowledge - from pretraining





In space

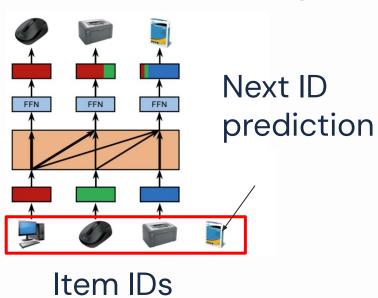
In recommendation

(1) World knowledge

LLM as sequential recommender

-> Alleviating the data sparsity of ID-based interactions in recommendation

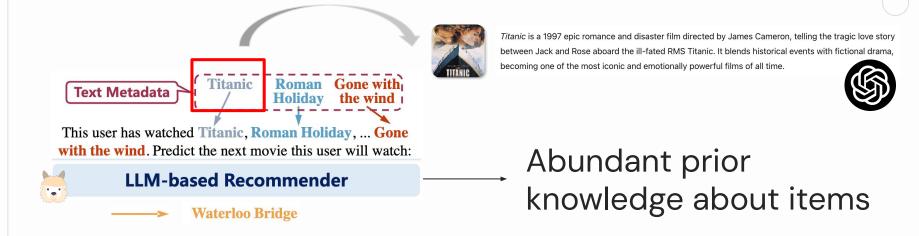
(1) World knowledge



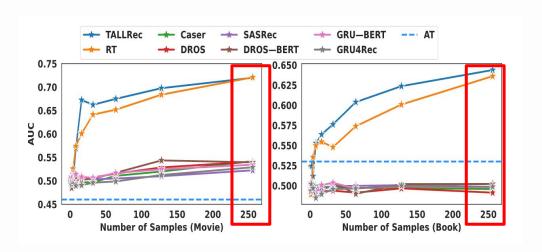
ID-based item modeling lack semantic meanings

Example: SASRec [ICDM'18]

(1) World knowledge



(1) World knowledge



Few data -> a good recommender

(1) World knowledge

LLM as sequential recommender

Cold-start ability

•••

(2) Natural language understanding & generation

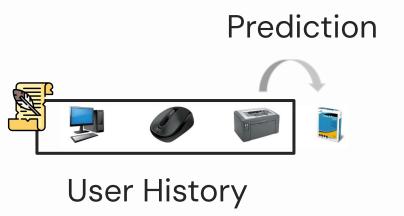
LLMs can interact with users fluently

(2) Natural language understanding & generation

LLM as conversational recommender

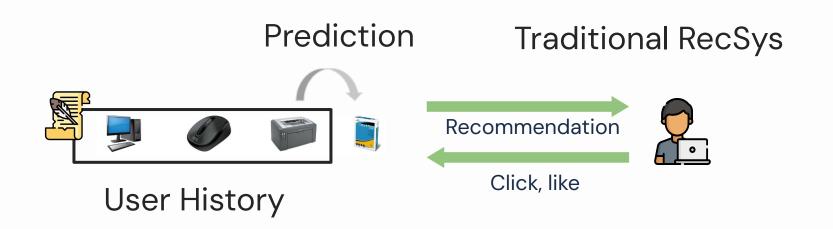
-> Towards more interactive recommender systems

(2) Natural language understanding & generation

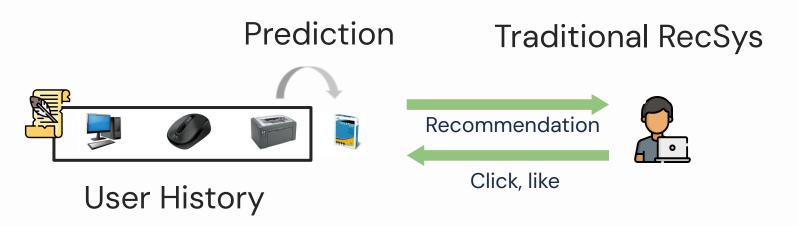


Traditional RecSys

(2) Natural language understanding & generation

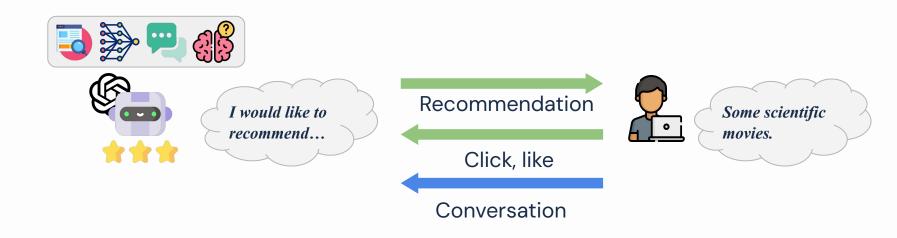


(2) Natural language understanding & generation

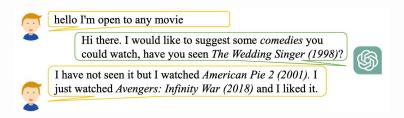


Passive recommendation!

(2) Natural language understanding & generation



(2) Natural language understanding & generation



<u>LLM as conversational</u> recommender

Interactive
User-friendly
More accurate

•••

(3) Human-like behavior

(3) Human-like behavior

Generative Agents can (mostly) simulate human behaviors

- Cooperation
- Organization

(3) Human-like behavior

LLM as user simulator

-> Simulating user behaviors for evaluating recommenders.

(3) Human-like behavior

Offline recommender evaluation

Inaccurate, but affordable

(3) Human-like behavior

Online recommender evaluation

Accurate, but costly

(3) Human-like behavior

LLM as user simulator

Faithful
Affordable
Controllable

•••

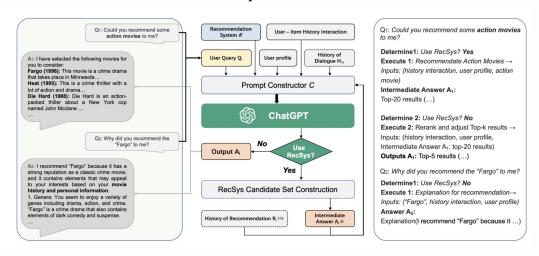
Part 1: LLM as Sequential Recommender

(i) Early efforts: Pretrained LLMs for recommendation;

• Directly use freezed LLMs (e.g., GPT 4) for recommendation.

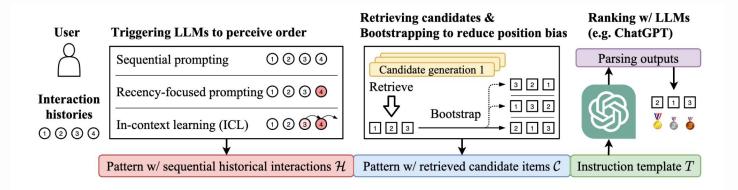
Prompt Engineering + In-Context Learning (ChatRec)

Key idea: LLMs as the recsys controller



Prompt Engineering + In-Context Learning (LLMRank)

Key idea: LLMs as the reranker



- Directly use freezed LLMs (e.g., GPT 4) for recommendation.
- A performance gap compared to traditional recommenders exists.

Sub-optimal performance comparing to SASRec!

Performance of LLMRank

	Method	ML-1M				Games			
	Method	N@1	N@5	N@10	N@20	N@1	N@5	N@10	N@20
full	Pop	0.08	1.20	4.13 4.41	5.79 6.04	0.13	1.00	2.27 2.96	2.62 3.19
	BPRMF [49] SASRec [33]	3.76	9.79	10.45	10.56	1.33	3.55	$\frac{2.96}{4.02}$	4.11
zero-shot	BM25 [50] UniSRec [30] VQ-Rec [29]	0.26 0.88 0.20	0.87 3.46 1.60	2.32 5.30 3.29	5.28 6.92 5.73	0.18 0.00 0.20	1.07 1.86 1.21	1.80 2.03 1.91	2.55 2.31 2.64
	Ours	1.74	5.22	6.91	7.90	0.90	2.26	2.80	3.08

Sub-optimal performance comparing to SASRec!

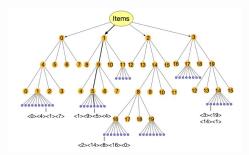
Aligning LLMs for recommendation tasks is necessary!

	pypirec [55]	0.10	0.10	10.40	10.00	1.00	0.00	7.02	4.11
zero-shot	BM25 [50]	0.26	0.87	2.32	5.28	0.18	1.07	1.80	2.55
	UniSRec [30]	0.88	3.46	5.30	6.92	0.00	1.86	2.03	2.31
	VQ-Rec [29]	0.20	1.60	3.29	5.73	0.20	1.21	1.91	2.64
	Ours	1.74	5.22	6.91	7.90	0.90	2.26	2.80	3.08

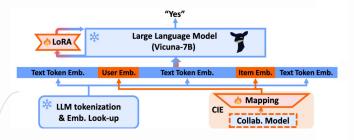
Part 1: LLM as Sequential Recommender

- (i) Early efforts: Pretrained LLMs for recommendation;
- (ii) Aligning LLMs for recommendation;

Pure text-based



+ External item tokens

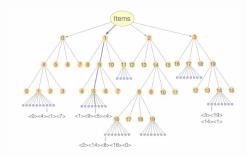


+ Collaborative embeddings

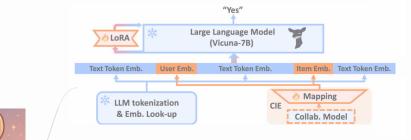


+ Multimodal information

Pure text-based



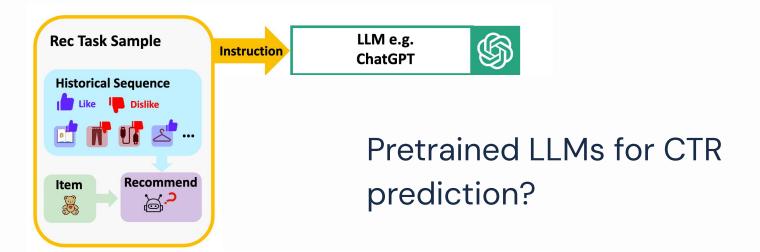
+ External item tokens



+ Collaborative embeddings

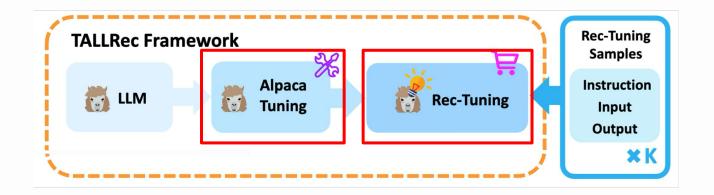
+ Multimodal information

(1) Pure text-based (TALLRec)



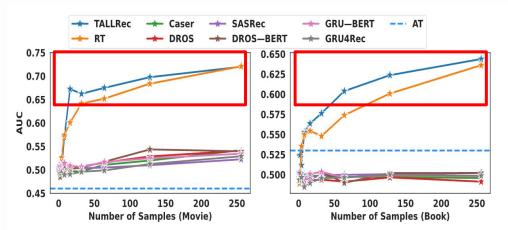
(1) Pure text-based (TALLRec)

(1) Pure text-based (TALLRec)



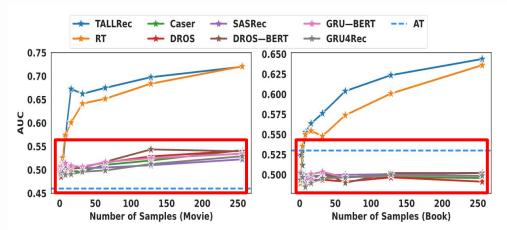
General task alignment -> Recommendation alignment

(1) Pure text-based (TALLRec)



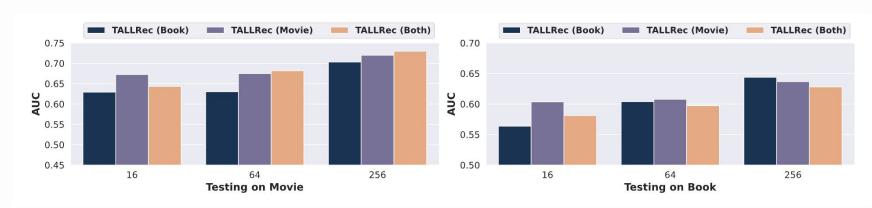
Few training data -> Huge improvements

(1) Pure text-based (TALLRec)



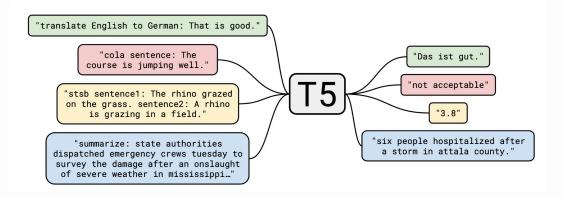
Traditional recommenders: suffer from too-sparse supervision signals

(1) Pure text-based (TALLRec)



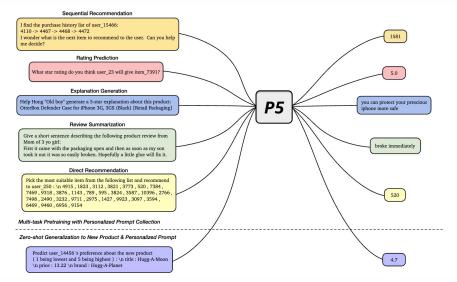
Cross-domain generalization

(1) Pure text-based - Multiple rec taks



Unified language modeling in NLP

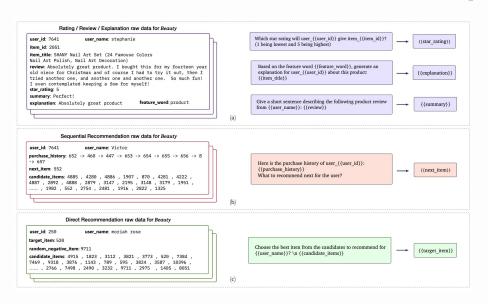
(1) Pure text-based - Multiple rec taks



Multi-task alignment (P5)

-> general recommender

(1) Pure text-based - Multiple rec taks



Training on different task prompts -> multiple recommendation abilities.

(1) Pure text-based - Multiple rec taks

	Table 6: Performance comparison on review summarization (%).											
26 1 1	Sports			Beauty				Toys				
Methods	BLUE2	ROUGE1	ROUGE2	ROUGEL	BLUE2	ROUGE1	ROUGE2	ROUGEL	BLUE2	ROUGE1	ROUGE2	ROUGEL
T0 (4-1)	2.1581	2.2695	0.5694	1.6221	1.2871	1.2750	0.3904	0.9592	2.2296	2.4671	0.6482	1.8424
GPT-2 (4-1)	0.7779	4.4534	1.0033	1.9236	0.5879	3.3844	0.6756	1.3956	0.6221	3.7149	0.6629	1.4813
P5-S (4-1)	2.4962	11.6701	2.7187	10.4819	2.1225	8.4205	1.6676	7.5476	2.4752	9.4200	1.5975	8.2618
P5-B (4-1)	2.6910	12.0314	3.2921	10.7274	1.9325	8.2909	1.4321	7.4000	1.7833	8.7222	1.3210	7.6134

	-	Table 7: Per	formance	comparison	on direct	recommendation.
--	---	--------------	----------	------------	-----------	-----------------

Made J.	Sports						Beauty					Toys			
Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10
BPR-MF	0.0314	0.1404	0.0848	0.2563	0.1220	0.0311	0.1426	0.0857	0.2573	0.1224	0.0233	0.1066	0.0641	0.2003	0.0940
BPR-MLP	0.0351	0.1520	0.0927	0.2671	0.1296	0.0317	0.1392	0.0848	0.2542	0.1215	0.0252	0.1142	0.0688	0.2077	0.0988
SimpleX	0.0331	0.2362	0.1505	0.3290	0.1800	0.0325	0.2247	0.1441	0.3090	0.1711	0.0268	0.1958	0.1244	0.2662	0.1469
P5-S (5-1)	0.0638	0.2096	0.1375	0.3143	0.1711	0.0600	0.2021	0.1316	0.3121	0.1670	0.0405	0.1538	0.0969	0.2405	0.1248
P5-B (5-1)	0.0245	0.0816	0.0529	0.1384	0.0711	0.0224	0.0904	0.0559	0.1593	0.0780	0.0187	0.0827	0.0500	0.1543	0.0729
P5-S (5-4)	0.0701	0.2241	0.1483	0.3313	0.1827	0.0862	0.2448	0.1673	0.3441	0.1993	0.0413	0.1411	0.0916	0.2227	0.1178
P5-B (5-4)	0.0299	0.1026	0.0665	0.1708	0.0883	0.0506	0.1557	0.1033	0.2350	0.1287	0.0435	0.1316	0.0882	0.2000	0.1102
P5-S (5-5)	0.0574	0.1503	0.1050	0.2207	0.1276	0.0601	0.1611	0.1117	0.2370	0.1360	0.0440	0.1282	0.0865	0.2011	0.1098
P5-B (5-5)	0.0641	0.1794	0.1229	0.2598	0.1488	0.0588	0.1573	0.1089	0.2325	0.1330	0.0386	0.1122	0.0756	0.1807	0.0975
P5-S (5-8)	0.0567	0.1514	0.1049	0.2196	0.1269	0.0571	0.1566	0.1078	0.2317	0.1318	0.0451	0.1322	0.0889	0.2023	0.1114
P5-B (5-8)	0.0726	0.1955	0.1355	0.2802	0.1627	0.0608	0.1564	0.1096	0.2300	0.1332	0.0389	0.1147	0.0767	0.1863	0.0997

	Table 3: Performance comparison on sequential recommendation.												
****	Sports					Ве	auty		Toys				
Methods	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	
Caser	0.0116	0.0072	0.0194	0.0097	0.0205	0.0131	0.0347	0.0176	0.0166	0.0107	0.0270	0.0141	
HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	0.0321	0.0221	0.0497	0.0277	
GRU4Rec	0.0129	0.0086	0.0204	0.0110	0.0164	0.0099	0.0283	0.0137	0.0097	0.0059	0.0176	0.0084	
BERT4Rec	0.0115	0.0075	0.0191	0.0099	0.0203	0.0124	0.0347	0.0170	0.0116	0.0071	0.0203	0.0099	
FDSA	0.0182	0.0122	0.0288	0.0156	0.0267	0.0163	0.0407	0.0208	0.0228	0.0140	0.0381	0.0189	
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0463	0.0306	0.0675	0.0374	
S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0443	0.0294	0.0700	0.0376	
P5-S (2-3)	0.0272	0.0169	0.0361	0.0198	0.0503	0.0370	0.0659	0.0421	0.0648	0.0567	0.0709	0.0587	
P5-B (2-3)	0.0364	0.0296	0.0431	0.0318	0.0508	0.0379	0.0664	0.0429	0.0608	0.0507	0.0688	0.0534	
P5-S (2-13)	0.0258	0.0159	0.0346	0.0188	0.0490	0.0358	0.0646	0.0409	0.0647	0.0566	0.0705	0.0585	
P5-B (2-13)	0.0387	0.0312	0.0460	0.0336	0.0493	0.0367	0.0645	0.0416	0.0587	0.0486	0.0675	0.0536	

11.1		SI	orts			Ве	auty		Toys			
Methods	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL
Attn2Seq	0.5305	12.2800	1.2107	9.1312	0.7889	12.6590	1.6820	9.7481	1.6238	13.2245	2.9942	10.7398
NRT	0.4793	11.0723	1.1304	7.6674	0.8295	12.7815	1.8543	9.9477	1.9084	13.5231	3.6708	11.1867
PETER	0.7112	12.8944	1.3283	9.8635	1.1541	14.8497	2.1413	11.4143	1.9861	14.2716	3.6718	11.7010
P5-S (3-3)	1.0447	14.9048	2.1297	11.1778	1.2237	17.6938	2.2489	12.8606	2.2892	15.4505	3.6974	12.1718
P5-B (3-3)	1.0407	14.1589	2.1220	10.6096	0.9742	16.4530	1.8858	11.8765	2.3185	15.3474	3.7209	12.1312
PETER+	2.4627	24.1181	5.1937	18.4105	3.2606	25.5541	5.9668	19.7168	4.7919	28.3083	9.4520	22.7017
P5-S (3-9)	1.4101	23.5619	5.4196	17.6245	1.9788	25.6253	6.3678	19.9497	4.1222	28.4088	9.5432	22.6064
P5-B (3-9)	1.4689	23.5476	5.3926	17.5852	1.8765	25.1183	6.0764	19.4488	3.8933	27.9916	9.5896	22.2178
P5-S (3-12)	1.3212	23.2474	5.3461	17.3780	1.9425	25.1474	6.0551	19.5601	4.2764	28.1897	9.1327	22.2514
P5-B (3-12)	1.4303	23.3810	5.3239	17.4913	1.9031	25.1763	6.1980	19.5188	3.5861	28.1369	9.7562	22,3056

Single LLM -> Effective on various recommendation tasks

(1) Pure text-based (P5)

Multi-scenario Recommendation: The items the user has recently clicked on are as follows: {USER BEHAVIOR SE-OUENCE}. In scenario {SCENE}, please recommend items.

Multi-objective Recommendation: The items the user has recently clicked on are as follows: {USER BEHAVIOR SE-OUENCE}. Please find items that the user will {ACTION}.

Long-tail Item Recommendation: The items the user has recently clicked on are as follows: {USER BEHAVIOR SE-QUENCE}. Please recommend long-tail items.

 $\begin{tabular}{ll} \textbf{Serendipity Recommendation}: The items the user has recently clicked on are as follows: {USER BEHAVIOR SEQUENCE}. \\ \end{tabular}$

Please recommend some new item categories.

Long-term Recommendation: The items the user has recently clicked on are as follows: {USER BEHAVIOR SEQUENCE}.

Please find items that match the user's long-term interests.

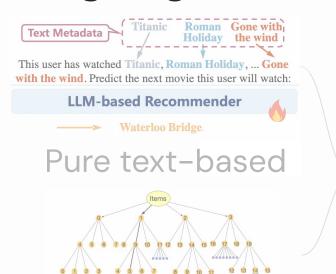
Search Problem: The items the user has recently clicked on are as follows: {USER BEHAVIOR SEQUENCE}. Please recommend items that match {OUERY}.

URM:

Unify recommendation & search

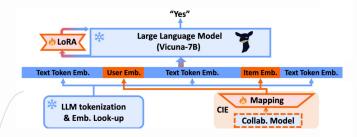
+ External item tokens

+ Multimodal information



+ External item tokens

<2><14><8><16><0>



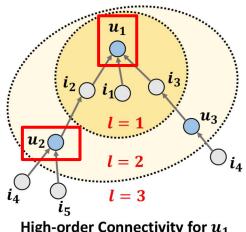
+ Collaborative embeddings

+ Multimodal information

(2) + Collaborative embeddings

Motivation:

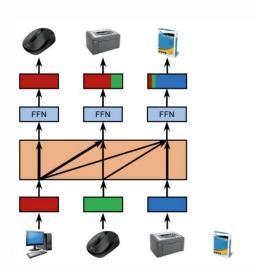
Language modeling may not capture collaborative information



(2) + Collaborative embeddings

Solution:

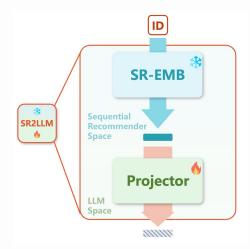
Aligning LLMs with embeddings from traditional recommenders



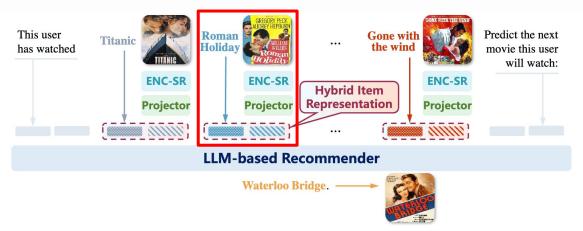
(2) + Collaborative embeddings (LLaRA)

+ Pretrained item embeddings

(a) Text-only prompting method.	(b) Hybrid prompting method.
Input: This user has watched Titanic [PH], Roman Holiday	Input: This user has watched Titanic [emb _s ¹⁴], Roman Holiday
[PH], Gone with the wind [PH] in the previous. Please	[emb _s ²⁰], Gone with the wind [emb _s ³⁷] in the previous. Please
predict the next movie this user will watch. The movie title	predict the next movie this user will watch. The movie title
candidates are The Wizard of Oz [PH], Braveheart [PH],,	candidates are The Wizard of Oz [emb _s ⁵], Braveheart [emb _s ⁴²],,
Waterloo Bridge [PH], Batman & Robin [PH]. Choose	Waterloo Bridge [emb _s ²⁰], Batman & Robin [emb _s ¹⁹]. Choose
only one movie from the candidates. The answer is	only one movie from the candidates. The answer is
Output: Waterloo Bridge.	Output: Waterloo Bridge.

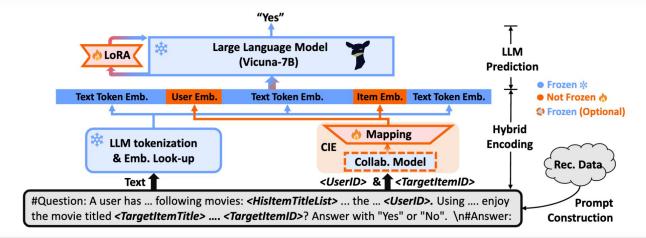


- (2) + Collaborative embeddings (LLaRA)
 - + Pretrained item embeddings

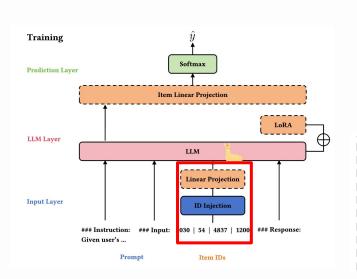


(2) + Collaborative embeddings (CoLLM)

+ Pretrained item embeddings + user embeddings

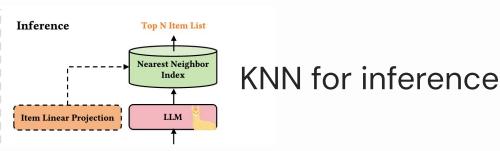


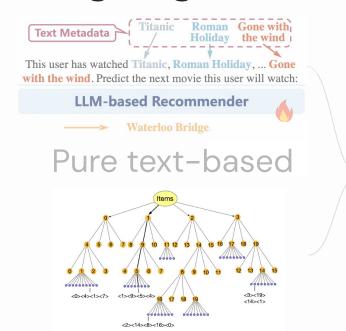
(2) + Collaborative embeddings (E4SRec)



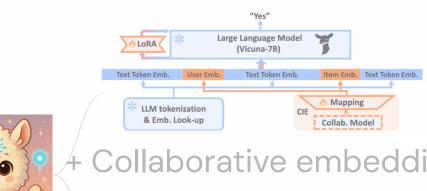
Discard text;

Collaborative embeddings only





+ External item tokens



+ Collaborative embeddings

+ Multimodal information

(3) + External item tokens

Motivation:

Tokens for language modeling are not optimal for recommendation.

Harry Potter
Harry Potter

Harry Potter

(3) + External item tokens

Motivation:

Tokens for language modeling are not optimal for recommendation.

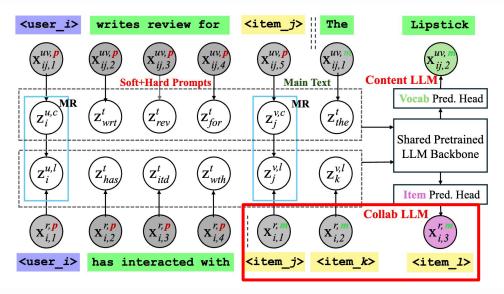
Maybe better?

Harry Potter

Tokenizer

Harry Potter

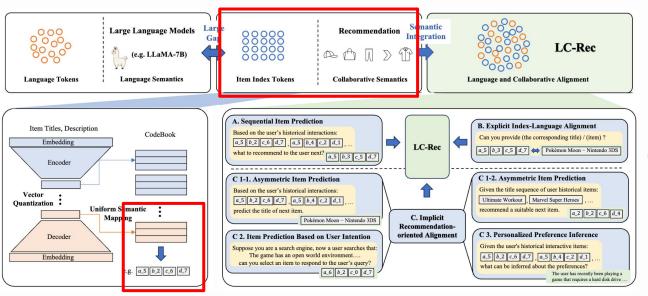
(3) + External item tokens (CLLM4Rec)



Naive approach:

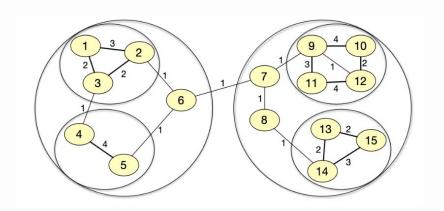
One ID for each item

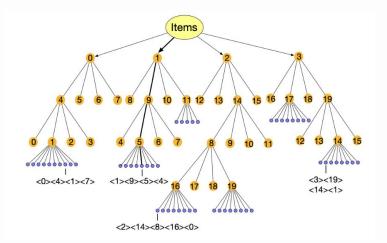
(3) + External item tokens (LC-Rec)



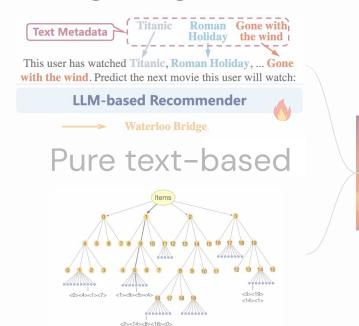
+ Semantic IDs
(Similar items
have similar IDs)

(3) + External item tokens

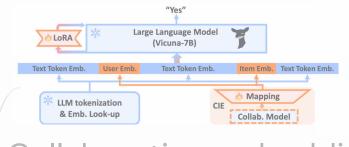




More complicated item tokens design



+ External item tokens



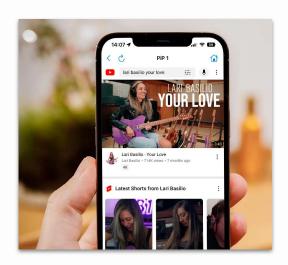
+ Collaborative embeddings

+ Multimodal information

(4) + Multimodal information

Motivation:

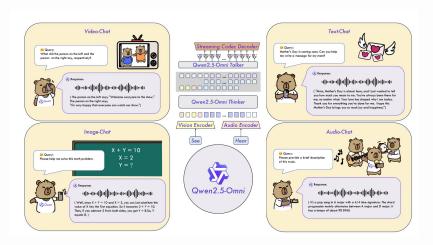
Human make decisions with multimodal information.



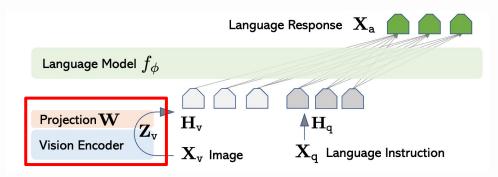
(4) + Multimodal information

Motivation:

Post-trained LLM can understand multimodal information

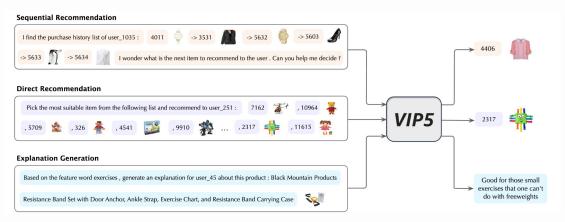


(4) + Multimodal information



Aligning vision and language with a projector

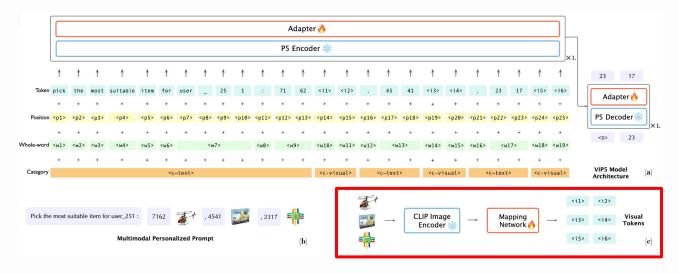
(4) + Multimodal information (VIP5)



Diff between P5:

Pair text with its image

(4) + Multimodal information (VIP5)



Alignment with projector

(4) + Multimodal information (VIP5)

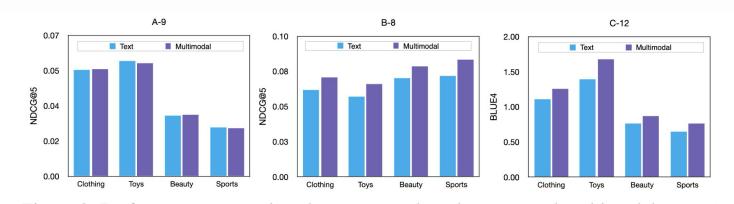
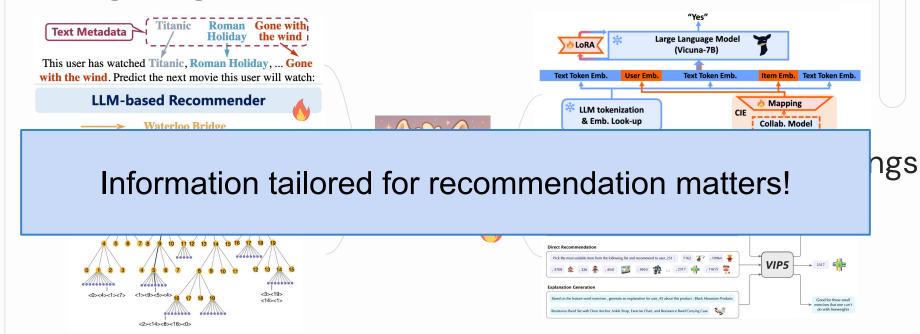


Figure 3: Performance comparison between text-based prompt and multimodal prompt.

Multimodal information is important



+ External item tokens

+ Multimodal information

Part 1: LLM as Sequential Recommender

- (i) Early efforts: Pretrained LLMs for recommendation;
- (ii) Aligning LLMs for recommendation;
- (iii) Training objective & inference

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

Waterloo Bridge.

Prediction

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

Waterloo Bridge.

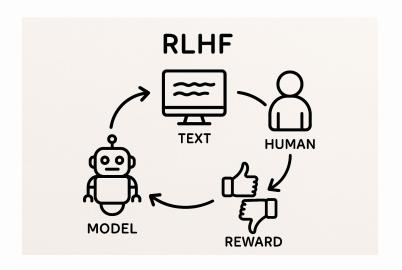
Prediction

(1) Supervised finetuning (SFT)

$$\mathcal{L}_{ ext{SFT}}(heta) = -\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\sum_{t=1}^{T} \log P_{ heta}(y_t \mid y_{< t})
ight]$$

Always predict the next token

(2) Preference learning



LLMs are trained to align human preferences

Recommendation is about user preferences

(2) Preference learning

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

Harry Potter

(2) Preference learning

$$\mathcal{L}_{\text{DPO}} = -\mathbb{E}_{(x_u, e_p, e_d)} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(e_p|x_u)}{\pi_{\text{ref}}(e_p|x_u)} - \beta \log \frac{\pi_{\theta}(e_d|x_u)}{\pi_{\text{ref}}(e_d|x_u)} \right) \right],$$

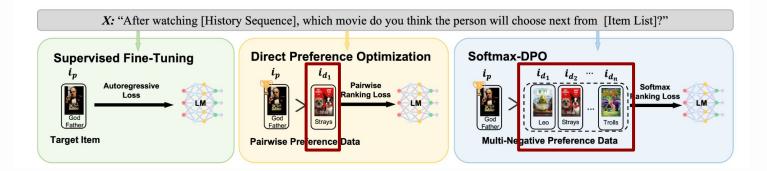
Direct Preference Optimization!

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

Waterloo Bridge

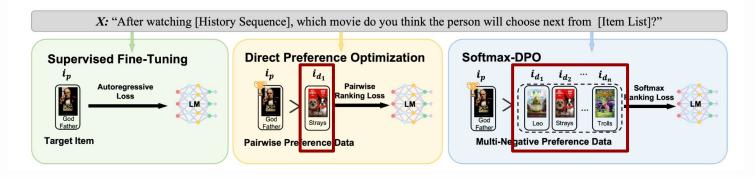
Harry Potter

(2) Preference learning



Single negative — Multiple negatives

(2) Preference learning



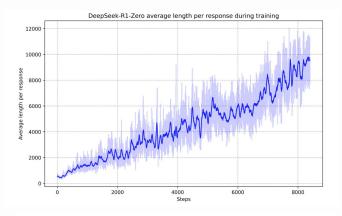
$$\mathcal{L}_{\text{S-DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x_u, e_p, \mathcal{E}_d) \sim \mathcal{D}} \left[\log \sigma \left(-\log \sum_{e_d \in \mathcal{E}_d} \exp \left(\beta \log \frac{\pi_{\theta}(e_d | x_u)}{\pi_{\text{ref}}(e_d | x_u)} - \beta \log \frac{\pi_{\theta}(e_p | x_u)}{\pi_{\text{ref}}(e_p | x_u)} \right) \right) \right].$$

(3) Reinforce learning

Emergent reasoning capabilities through RL

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)]
\frac{1}{G} \sum_{i=1}^G \left(\min\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)} A_i, \operatorname{clip}\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon\right) A_i \right) - \beta \mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right) \right),$$
(1)

$$\mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right) = \frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - \log\frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - 1,\tag{2}$$



Question: If a > 1, then the sum of the real solutions of $\sqrt{a - \sqrt{a + x}} = x$ is equal to

Response: <think>

To solve the equation $\sqrt{a-\sqrt{a+x}} = x$, let's start by squaring both ...

$$\left(\sqrt{a-\sqrt{a+x}}\right)^2 = x^2 \implies a-\sqrt{a+x} = x^2.$$

Rearrange to isolate the inner square root term:

$$(a-x^2)^2 = a+x \implies a^2 - 2ax^2 + (x^2)^2 = a+x \implies x^4 - 2ax^2 - x + (a^2 - a) = 0$$

Wait, wait. Wait. That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be \cdots We started with the equation:

 $\sqrt{a-\sqrt{a+x}}=x$

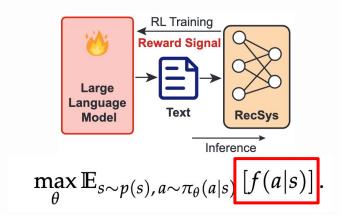
First, let's square both sides:

 $a - \sqrt{a + x} = x^2 \implies \sqrt{a + x} = a - x^2$

Next, I could square both sides again, treating the equation: · · ·

...

(3) Reinforce learning



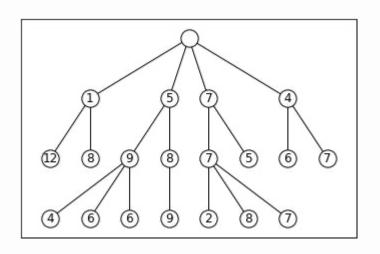
Maximize the reward from recommender system

Prompt Template for REC-R1 + Dense Retriever (Product Search)

You are an expert in generating queries for dense retrieval. Given a customer query, your task is to retain the original query while expanding it with additional semantically relevant information, retrieve the most relevant products, ensuring they best meet customer needs. If no useful expansion is needed, return the original query as is.

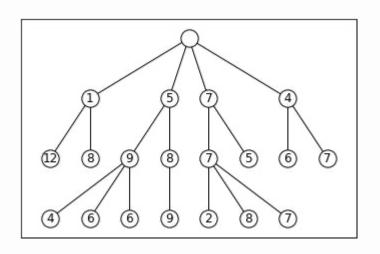
```
Below is the query:
· · · {user_query} · · ·
<lim_startl>svstem
You are a helpful AI assistant. You first think about the reasoning process
in the mind and then provide the user with the answer.
endl>
start|>user
[PROMPT as above]
Show your work in <think>\think> tags. Your final response must be in JSON
format within <answer>\answer> tags. For example.
<answer>
  "query": xxx
</answer>.
endl>
start|>assistant
Let me solve this step by step
<think>
```

(1) Beam Search



Generating answers with the top-k highest scored beams

(1) Beam Search



It may generate invalid items

In RecSys:
No Hallucination permitted!

(2) Constrained Beam Search

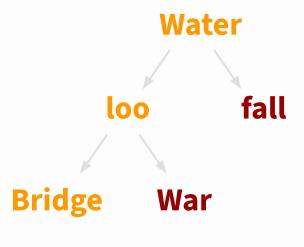
Valid items:

Waterloo Bridge, Waterfall Story, and Waterloo War How to make the generated items always valid?

(2) Constrained Beam Search

Valid items:

Waterloo Bridge, Waterfall Story, and Waterloo War



Constrained search tree

(2) Constrained Beam Search

I have watched Titanic, Roman Holiday, ...

Gone with the wind. Predict the next movie
I will watch:

Water

(2) Constrained Beam Search

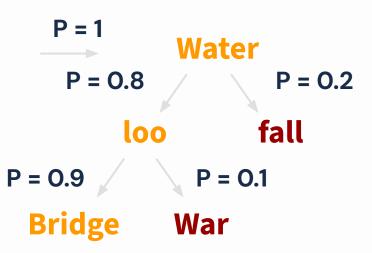
I have watched Titanic, Roman Holiday, ...

Gone with the wind. Predict the next movie
I will watch:

(2) Constrained Beam Search

I have watched Titanic, Roman Holiday, ...

Gone with the wind. Predict the next movie
I will watch:

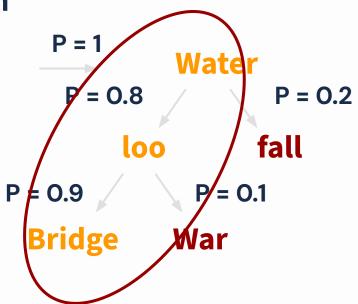


(2) Constrained Beam Search

I have watched Titanic, Roman Holiday, ...

Gone with the wind. Predict the next movie
I will watch:

Valid Item!



(3) Special design

$$S(h_{\leq t}) = S(h_{\leq t-1}) + \log(p(h_t|x, h_{\leq t-1})),$$

$$\mathcal{S}(h) = \mathcal{S}(h) / h_L^{lpha},$$

Length penalty in beam search; Human does not like over long sentences.

Redundant for recommendation

(3) Special design

$$S(h_{\leq t}) = S(h_{\leq t-1}) + \log(p(h_t|x, h_{\leq t-1})),$$

Remove length penalty

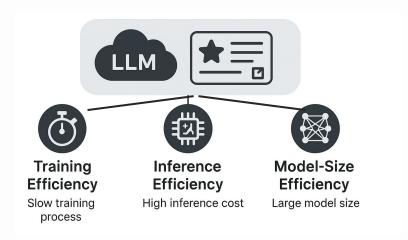
	Instruments	Books	CDs	Sports	Toys	Games
Baseline	0.1062	0.0308	0.0956	0.1171	0.0965	0.0610
D^3	0.1111	0.0354	0.1190	0.1215	0.1025	0.0767
- RLN	0.1093	0.0353	0.1000	0.1200	0.0975	0.0659
- TFA	0.1086	0.0309	0.1115	0.1192	0.1006	0.0732

Imp when removing

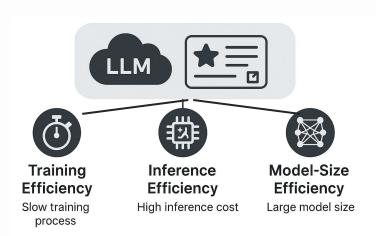
Part 1: LLM as Sequential Recommender

- (i) Early efforts: Pretrained LLMs for recommendation;
- (ii) Aligning LLMs for recommendation;
- (iii) Training objective & inference
- (iiii) Efficiency

A crucial question in real-world deployment



A crucial question in real-world deployment

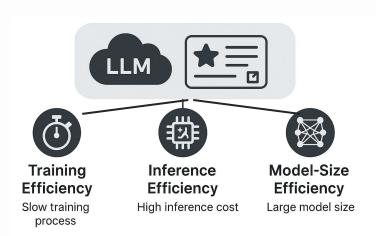


Training efficiency:

LLM: update by months

Recommender: update by hours

A crucial question in real-world deployment

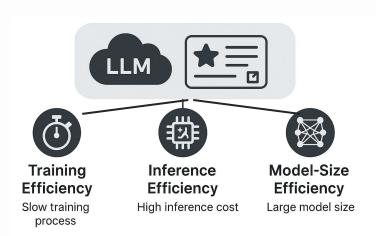


Inference efficiency:

LLM: wait for seconds

Recommender: wait for milliseconds

A crucial question in real-world deployment

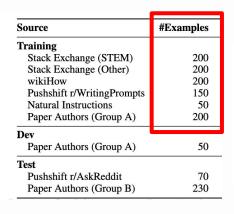


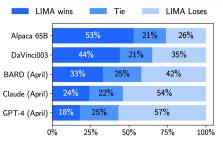
Model-size efficiency:

LLM: serve for millions

Recommender: serve for billions

(1) Training efficiency



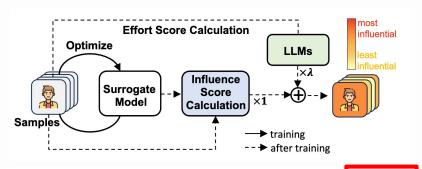


Less is more for alignment

1k high quality examples ->

Surpass large scale training

(1) Training efficiency

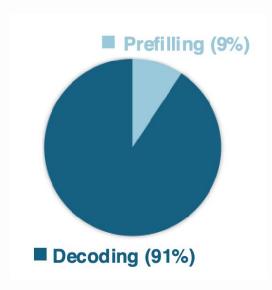


	R@10↑	R@20↑	N@10↑	N@20↑	Time↓
Full	0.0169	0.0233	0.0102	0.0120	36.87h
DEALRec	0.0181	0.0276	0.0115	0.0142	1.67h
% Improve.	7.10%	18.45%	12.75%	18.33%	-95.47%

Select the most informative examples ->

Reducing 95% training time

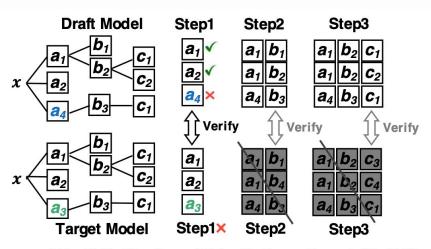
(2) Inference efficiency



Autoregressive paradigm in LLM

-> huge time on the decoding stage

(2) Inference efficiency

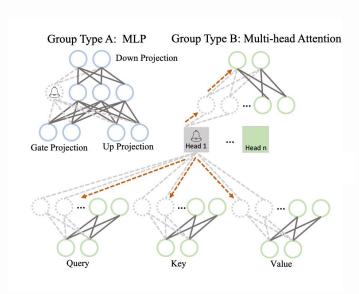


N-to-K Verification of SD with Beam Search (N=K=3)

Speculative decoding:

Decoder acceleration with a small-size draft model

(3) Model-size efficiency - Pruning

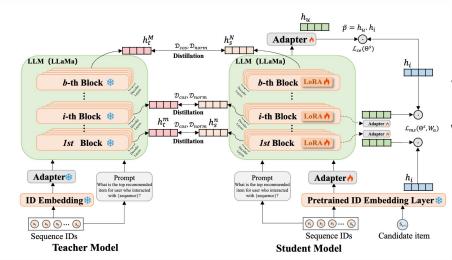


Similar performance with

0.6% parameters

		Tasks		
Method	#Params	TNEWS ↑	IFLYTEK↑	CSL↑
M6-base	327M	0.598	0.631	0.852
ALBERT-zh-base M6-Edge	12M 10M	0.550 0.552	0.564 0.586	0.785 0.831
ALBERT-zh-tinv	4M	0.534	0.488	0.750
M6-Edge, Pruned	2M	0.537	0.559	0.798

(3) Model-size efficiency - Distillation



SLM learns from LLM

With Hard label + soft label

(3) Model-size efficiency - Distillation

Table 3: Experimental results (%) on the Music and Sport dataset.

Model	HR@1	HR@5	NDCG@5	MRR	HR@1	HR@5	NDCG@5	MRR	Rank
Caser	0.71	3.28	1.96	2.29	1.05	3.75	2.39	2.84	13.50
GRU4Rec	1.89	3.22	2.57	3.08	5.26	7.75	6.52	7.08	10.13
BERT4Rec	2.10	3.16	2.64	3.11	4.81	6.70	5.79	6.26	10.63
SASRec	1.82	5.72	3.79	4.51	4.70	8.43	6.59	7.24	8.75
HGN	2.01	5.49	3.82	4.17	3.42	6.24	4.83	5.30	10.50
LightSANs	1.05	4.06	2.54	3.00	5.18	8.94	7.07	7.72	8.25
S ³ -Rec	2.48	7.37	4.94	4.68	4.14	8.49	6.89	7.35	6.88
DuoRec	1.84	4.50	3.19	3.04	4.13	8.81	7.03	6.64	9.13
MAERec	2.19	6.35	4.67	3.96	4.01	8.35	6.65	6.98	8.63
Open-P5	4.35	8.12	6.74	-	5.49	8.50	6.92	15	5.33
E4SRec	5.62	9.29	7.50	7.98	6.40	9.67	8.05	8.70	1.75
E4SRec8	5.46	8.86	7.21	7.74	5.48	8.63	7.06	7.76	3.63
E4SRec ₄	5.33	8.75	7.08	7.59	5.41	8.65	7.04	7.72	4.50
$SLMRec_{4\leftarrow 8}$	5.72	9.15	7.48	8.03	6.62	9.83	8.25	8.89	1.25

Reduced model-size; Reduced inference time

Method	Tr time(h)	Inf time(h)	Tr params (B)	Inf params (B)
Open-P5 _{LLaMa}	0.92	4942	0.023	7.237
E4SRec	3.95	0.415	0.023	6.631
$\mathbf{SLMRec}_{4\leftarrow 8}$	0.60	0.052	0.003	0.944

Part 1: LLM as Sequential Recommender

- (1) Early efforts: pretrained LLMs for rec
- (2) Aligning LLMs for recommendation
- Pure text-based
 Collaborative embeddings
- External item tokens Multimodal information
- (3) Training objective & inference

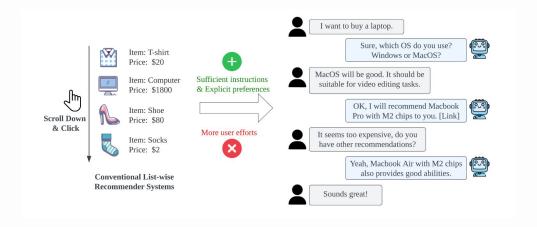
Inference: (constrained) beam search Training: SFT, DPO, RL;

(4) Efficiency

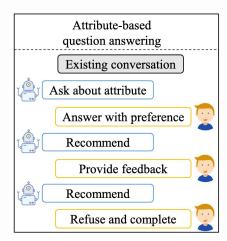
Data efficiency; Inference efficiency; Model-size efficiency

Conversational Recommender System (CRS)

- Recommendations with multiple turns conversation
- Interactive; engaging users in the loop

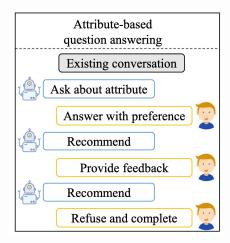


Attribute-based

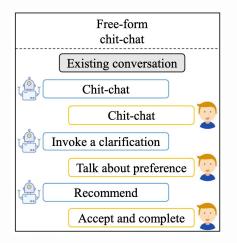


User Simulator Conversational Recommendation System

Attribute-based



Free-form



User Simulator Conversational Recommendation System

Features: <u>Task-specific</u> conversational recommenders, trained on <u>limited conversation data</u>.

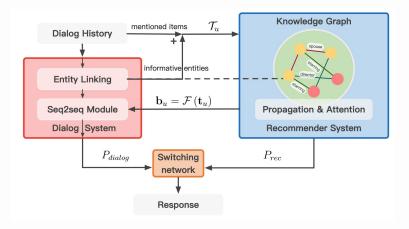
Features: <u>Task-specific</u> conversational recommenders, trained on <u>limited conversation data</u>.

- Lack of world knowledge.
- Requirement of complicated strategies.
- Incompatible natural language generation abilities.
- Lack of generalization capabilities.

Paradigms of CRS before the era of LLM

Traditional CRS: KBRD

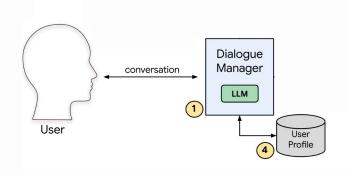
- End-to-end conversational recommender system
- Switching between conversation and recommendation
- External knowledge from knowledge graph



Example

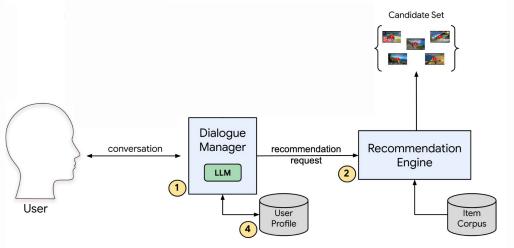
LLM as conversational recommender

Framework (RecLLM)



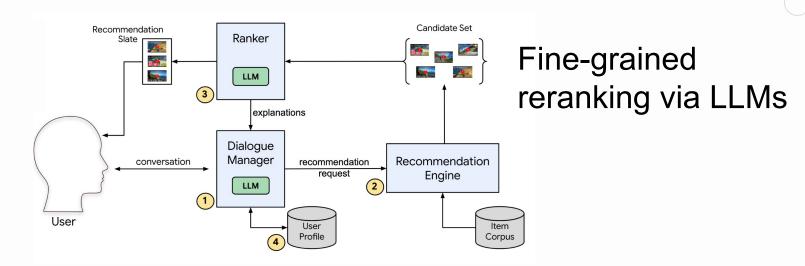
Conversation with users via LLMs

Framework (RecLLM)



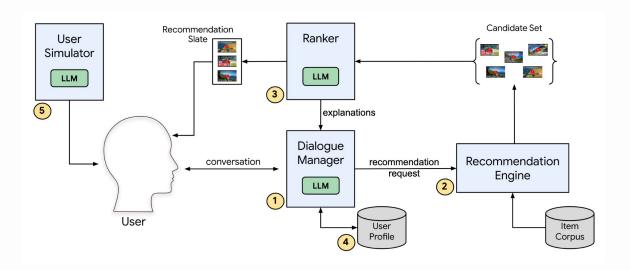
Recommendation via tools

Framework (RecLLM)

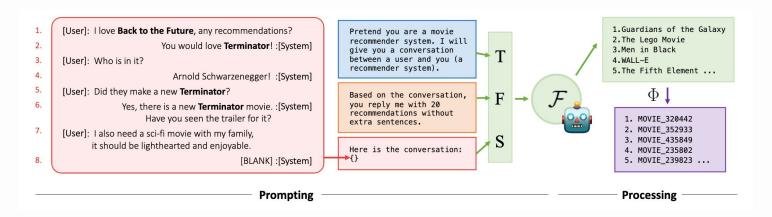


Framework (RecLLM)

Evaluation via LLMs

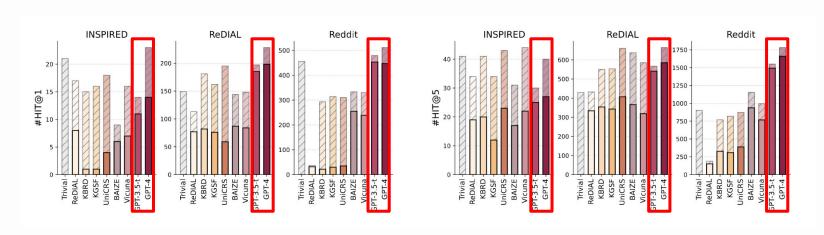


LLMs as zero-shot CRS



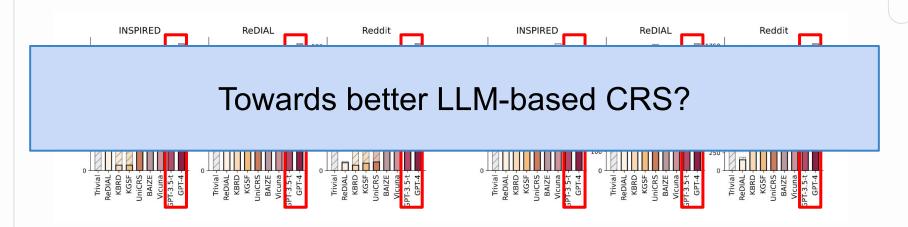
How powerful are LLMs for zero-shot CRS?

LLMs as zero-shot CRS



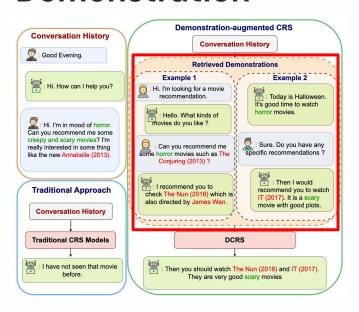
Can surpass traditional CRSs!

LLMs as zero-shot CRS



Can surpass traditional CRSs!

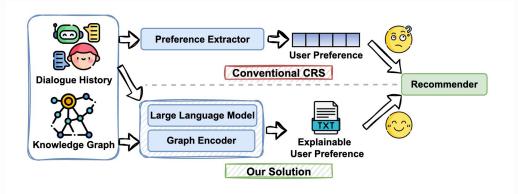
+ Demonstration



Prompting with previously successful conversation

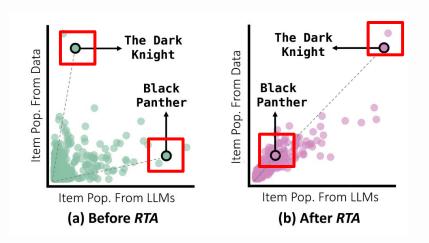
Relevant conversation history helps!

+ Knowledge graph



Recommendation-spe cific knowledge graph helps

+ Collaborative information



Collaborative information (e.g., popularity) helps LLMs fit the real distribution in CRS

Challenges - Datasets

Public datasets for CRS are limited, due to the scarcity of conversational products and real-world CRS datasets

Challenges - Evaluation

Traditional metrics like NDCG and BLEU are often insufficient to assess user experience

Challenges - Product

What is the form of LLM-based CRS products?

ChatBot? Search bar? Independent App?

Part 2: LLM as Conversational Recommender

(1) LLMs show potential in CRS

- (2) LLM-based CRS can be improved with: demonstration, collaborative information ...
- (3) Challenges in LLM-based CRSs: dataset, evaluation, and product

Part 3: LLM as User Simulator

User simulators before the era of LLM

RL-based user simulator

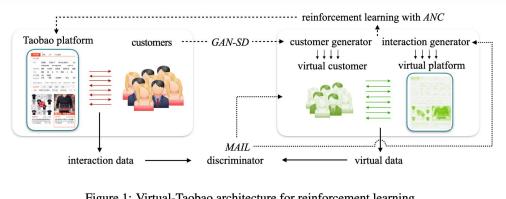
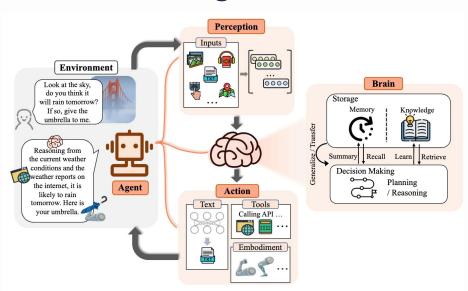


Figure 1: Virtual-Taobao architecture for reinforcement learning.

High sampling cost Overfitting risks Training instability Limited action space

Generative agents



Perception

Planning

Memory

Action

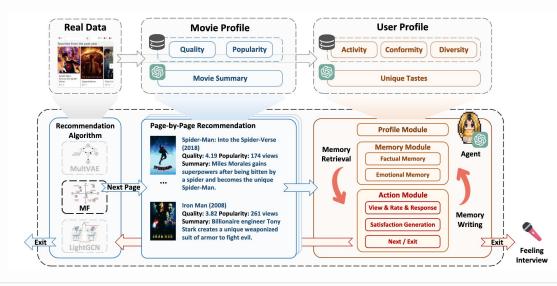
•••

Generative agents for recommendation

Human-like behavior Abundant action space Reduced training cost

. . .

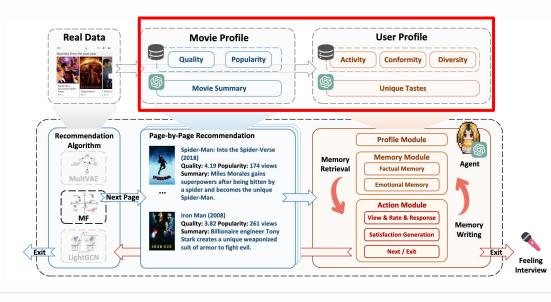
Generative agents for recommendation



Realworld-like simulation paradigm

- 1000 users
- Page-by-page simulation

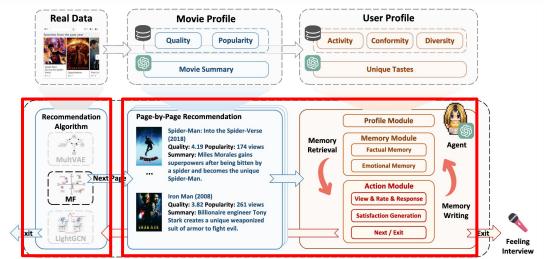
Generative agents for recommendation



Realworld-like simulation paradigm

- 1000 users
- Page-by-page simulation

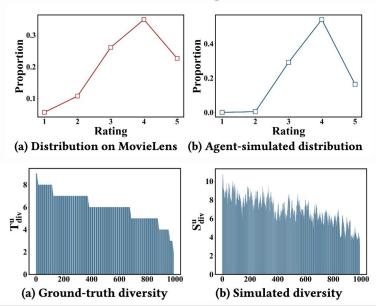
Generative agents for recommendation



Realworld-like simulation paradigm

- 1000 users
- Page-by-page simulation

Generative agents for recommendation



Aligned user preferences & Recommender evaluation

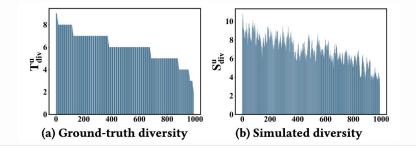
Table 2: Recommendation strategies evaluation.

	\overline{P}_{view}	\overline{N}_{like}	\overline{P}_{like}	\overline{N}_{exit}	\overline{S}_{sat}
Random	0.312	3.3	0.269	2.99	2.93
Pop	0.398	4.45	0.360	3.01	3.42
MF	0.488	6.07*	0.462	3.17*	3.80
MultVAE	0.495	5.69	0.452	3.10	3.75
LightGCN	0.502*	5.73	0.465*	3.02	3.85*

Generative agents for recommendation

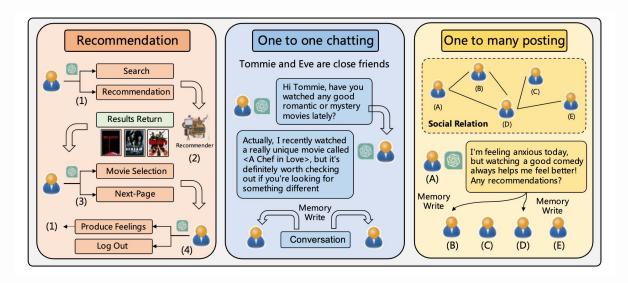
Alianed user preferences

How to make the simulation more faithful?



	\overline{P}_{view}	\overline{N}_{like}	\overline{P}_{like}	\overline{N}_{exit}	\overline{S}_{sat}
Random	0.312	3.3	0.269	2.99	2.93
Pop	0.398	4.45	0.360	3.01	3.42
MF	0.488	6.07*	0.462	3.17*	3.80
MultVAE	0.495	5.69	0.452	3.10	3.75
LightGCN	0.502*	5.73	0.465*	3.02	3.85*

+ Social behaviors



Recommendation Chat Networking

+ Multiturn conversation

User ID: A1EXXXXXDUE6B0

Historical Interactions: ["Robin Williams: Live On Broadway", "Mission Impossible on VHS", "Solaris", "Elysium", "Wall Street", "Mystic River", ...]

Conversation 1:

[User] Hi, I recently watched Mission Impossible on VHS and it was a fantastic high-tech spy movie! Tom Cruise gave ...

[Agent] That's great to hear! I have a movie recommendation for you based on your likes. How about checking out World War Z?

[User] Oh, I'm definitely interested. Can you tell me more about the movie?

[Agent] Certainly! World War Z is a good zombie war flick...

Conversation 2:

[User] Hi, I recently watched the movie "Solaris" and I have to say, I didn't enjoy it at all. It felt overly melodramatic and lacked substance... [Agent] I understand why you didn't like "Solaris". I can recommend a movie you might enjoy instead. How about "Elysium"? It's a bilingual film that...

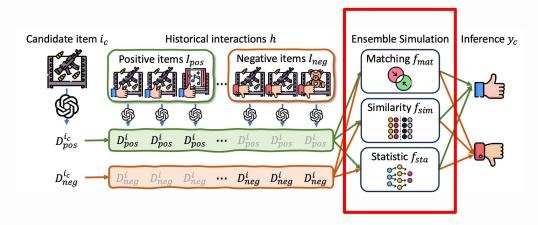
[User] Oh, I've actually already watched "Elysium" and it was better than I expected, but still not great....

[Agent] How about giving "Wrecking Crew" a try? It's another movie you might like based on your previous preferences...

[User] Sure, that sounds interesting...

Simulating users in the conversational scenarios

+ Multi-facet simulation objective



Category matching
Fine-grained similarity
Statistic information

+ Multi-facet simulation objective

Dataset	Metric	PPO	TRPO	A2C	DQN
Yelp	A. Rwd↑	9.97	13.45	24.15	27.56
	T. Rwd↑	141.57	157.42	267.60	330.98
	Liking%↑	34.59	40.07	48.35	49.43
Amazon Music	A. Rwd↑	10.49	11.31	13.45	16.70
	T. Rwd↑	129.03	140.15	141.03	181.42
	Liking%↑	29.30	32.46	29.54	33.18
Amazon Games	A. Rwd↑	18.72	21.35	27.56	26.43
	T. Rwd↑	208.43	242.26	317.56	269.02
	Liking%↑	33.15	37.64	43.52	40.73
Amazon Movie	A. Rwd↑	29.42	27.47	31.72	38.60
	T. Rwd↑	310.69	301.40	354.34	416.18
	Liking%↑	38.59	36.70	42.37	44.50
Anime	A. Rwd↑	14.12	14.58	21.50	18.03
	T. Rwd↑	155.74	163.44	242.95	201.94
	Liking%↑	25.46	24.27	31.52	30.67

Reliable environment for RL-based recommenders

Part 3: LLM as User Simulator

- (1) RL-based simulators are limited in action space, action space, and training instability
- (2) LLMs open up a new paradigm for simulating users
- (3) They can give feedback for RL-based recommenders
- (4) Challenges: scaling, training, industry deployment