

Introduction

of Generative Recommendation

Scaling Law as a Pathway towards AGI

Scaling laws provide a framework for understanding how **model size**, **data volume**, and **test-time computing** might lead to advanced AI capabilities.

However ...

Language Modeling

 Dense world knowledge

- V_f
- Text tokens (Ten thousands level)

User Behavior Modeling

- Sparse user-item interactions
- Items (Billion to trillion level)

Scaling laws rarely apply to traditional recommendation models.

As the Reflection of Real World,

What are Generative Models & Why?

A generative model learns the underlying distribution of data and can generate new samples from it.

A Potential Solution: "Generative" Recommendation

"What User Behaviors LLMs can not Generate, LLMs do not Understand."

Where are We Now?

In language and vision:

- Large language/diffusion models have been established.
- Scaling law has been witnessed.

In recommendation:

- Incorporat generative components in traditional recommender.
- Initial attempts on generative recommendation.

Pathways towards Scalable Generative Recommendation

Adapt Pre-trained Models

- Large Language Models

Text Metadata

This user has watched **Titanic**, **Roman Holiday**, ... **Gone** with the wind. Predict the next movie this user will watch:

Titanic Roman Gone with Holiday the wind

LLM-based Recommender

Adapting LLMs for recommendation task

Pathways towards Scalable Generative Recommendation

Train from Scratch

- Autoregressive Models
 - Semantic ID

- Diffusion Models

Schedule Overview

Time (AEST)	Session	Presenter
9:00 - 9:10	Part 1: Background and Introduction	Tat-Seng Chua
9:10 - 10:10	Part 2: LLM-based Generative Recommendation	Leheng Sheng
10:10 - 10:30	Part 3.1: Introduction of Semantic IDs	Yupeng Hou
10:30 - 11:00	Coffee Break & QA Session	
11:00 - 11:40	Part 3.2: SemID-based Generative Recommendation	Yupeng Hou
11:40 - 12:10	Part 4: Diffusion-based Generative Recommendation	Jiancan Wu (proxy speaker of Zhengyi)
12:10 - 12:30	Part 5: Open Challenges and Beyond	Yupeng Hou