Introduction

of Generative Recommendation
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Scaling Law as a Pathway towards AGI
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Scaling laws provide a framework for understanding how
model size, data volume, and test-time computing might
lead to advanced Al capabillities.

Understanding Scaling Laws for Recommendation Models. Arxiv 2022.
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However ...

Language Modeling User Behavior Modeling

- Dense world V’/ - Sparse user-item
knowledge / S Interactions

- Text tokens (Ten - Items (Billion to trillion
thousands level) level)

Scaling laws rarely apply to traditional
recommendation models.



As the Reflection of Real World,
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What are Generative Models & Why ?

A generative model learns the underlying distribution of
data and can generate new samples from it.

Learning Generating

P,(X)

Training data~p__, (x) Data generation New samples
distribution



A Potential Solution:
“"Generative” Recommendation

What | can't create | don't
understand

— Richard P ?t’l/mnalz =

“What User Behaviors LLMs can not Generate, LLMs do not
Understand.”



Where are We Now?

In language and vision:

e Large language/diffusion models have been established.
e Scaling law has been witnessed.

In recommendation:

e Incorporat generative components in traditional
recommender.
e [nitial attempts on generative recommendation.



Pathways towards Scalable Generative
Recommendation

Adapt Pre-trained Models
- Large Language Models

mic  Roman Gone w1th|
Text Metadata }l Holiday the ‘Qlld :
This user has watched T 1 >, Roman Holiday, ... Gone

with the wind. Predict the next movie this user w111 watch:

LLM-based Recommender

Adapting LLMs for recommendation task

Liao et al. LLaRA: Large Language-Recommendation Assistant. SIGIR 2024.



Pathways towards Scalable Generative
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Schedule Overview

Time (AEST)
9:00-9:10

9:10-10:10
10:10 - 10:30
10:30 - 11:00
11:00 - 11:40

11:40-12:10

12:10-12:30

Session

Part 1: Background and Introduction

Part 2: LLM-based Generative Recommendation
Part 3.1: Introduction of Semantic IDs

Coffee Break & QA Session

Part 3.2: SemID-based Generative Recommendation

Part 4: Diffusion-based Generative Recommendation

Part 5: Open Challenges and Beyond
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