

Generative Recommendation Models: Progress and Directions

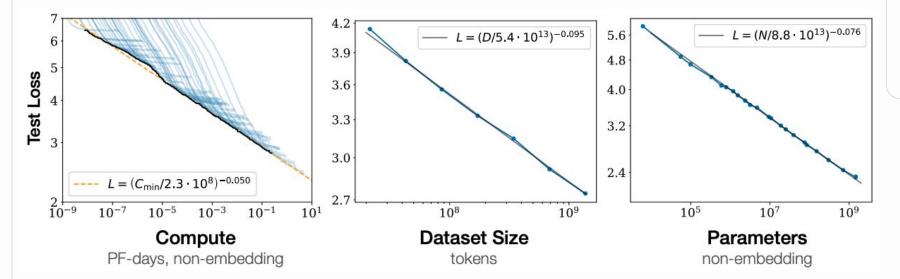
Yupeng Hou¹, An Zhang², Leheng Sheng², Zhengyi Yang³, Xiang Wang³, Tat-Seng Chua², Julian McAuley¹ Proxy Speaker: Jiancan Wu

¹UC San Diego ²NUS ³USTC

Introduction

of Generative Recommendation

Scaling Law as a Pathway towards AGI



Scaling laws provide a framework for understanding how **model size**, **data volume**, and **test-time computing** might lead to advanced AI capabilities.

However ...

Language Modeling

 Dense world knowledge

- V_f
- Text tokens (Ten thousands level)

User Behavior Modeling

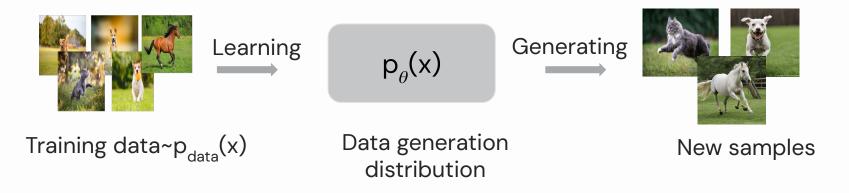
- Sparse user-item interactions
- Items (Billion to trillion level)

Scaling laws rarely apply to traditional recommendation models.

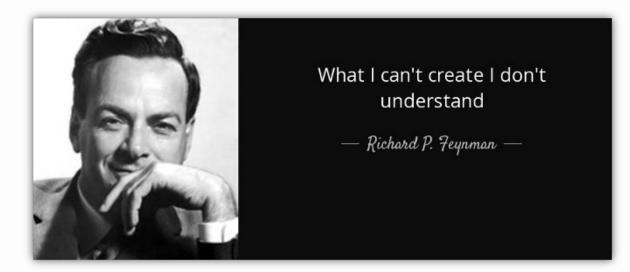
As the Reflection of Real World,

What are Generative Models & Why?

A generative model learns the underlying distribution of data and can generate new samples from it.



A Potential Solution: "Generative" Recommendation



"What User Behaviors LLMs can not Generate, LLMs do not Understand."

Where are We Now?

In language and vision:

- Large language/diffusion models have been established.
- Scaling law has been witnessed.

In recommendation:

- Incorporat generative components in traditional recommender.
- Initial attempts on generative recommendation.

Pathways towards Scalable Generative Recommendation

Adapt Pre-trained Models

- Large Language Models

Text Metadata

This user has watched **Titanic**, **Roman Holiday**, ... **Gone with the wind**. Predict the next movie this user will watch:

Titanic Roman Gone with Holiday the wind

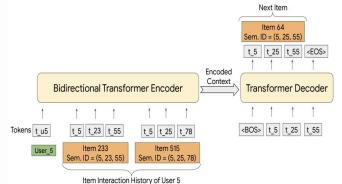
LLM-based Recommender

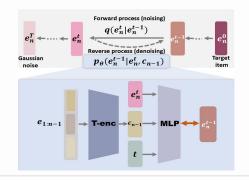
Adapting LLMs for recommendation task

Pathways towards Scalable Generative Recommendation

Train from Scratch

- Autoregressive Models
 - Semantic ID

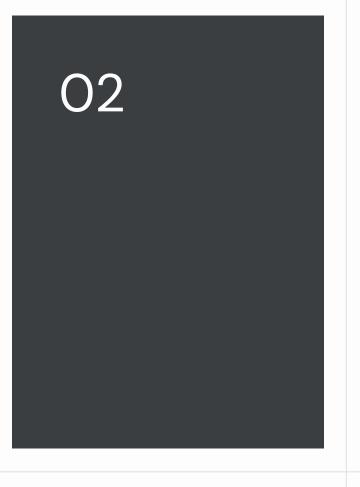




- Diffusion Models

Schedule Overview

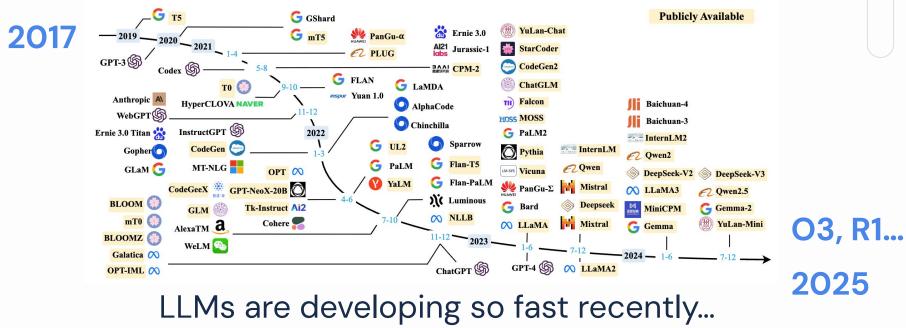
Time (AEST)	Session	Presenter
9:00 - 9:10	Part 1: Background and Introduction	Tat-Seng Chua
9:10 - 10:10	Part 2: LLM-based Generative Recommendation	Leheng Sheng
10:10 - 10:30	Part 3.1: Introduction of Semantic IDs	Yupeng Hou
10:30 - 11:00	Coffee Break & QA Session	
11:00 - 11:40	Part 3.2: SemID-based Generative Recommendation	Yupeng Hou
11:40 - 12:10	Part 4: Diffusion-based Generative Recommendation	Jiancan Wu (proxy speaker of Zhengyi)
12:10 - 12:30	Part 5: Open Challenges and Beyond	Yupeng Hou



-based Generative Recommendation

The Rise of Large Language Models

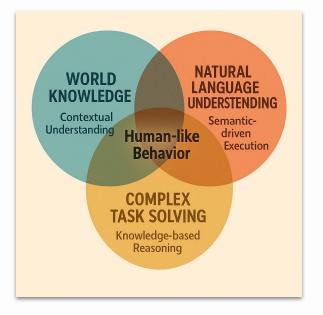
Transformer



Large Language Models

LLMs are machine learning models that can perform a variety of natural language processing (NLP) tasks

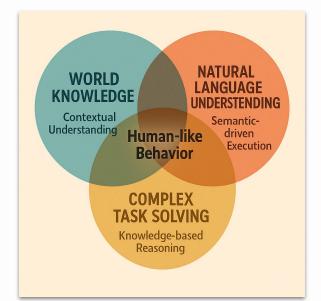
Large Language Models



Key features of LLMs:

- World knowledge.
- Natural language understanding.
- Human-like behavior.

Large Language Models

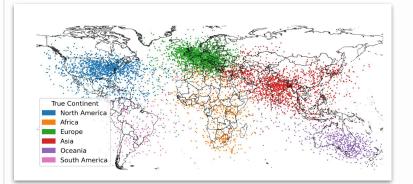


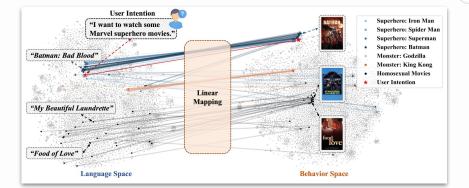
Key features of LLMs:

- World knowledge.
- Natural language understanding.
- Human-like behavior.

How can these features benefit recommender systems?

(1) World knowledge - from pretraining





In space

In recommendation

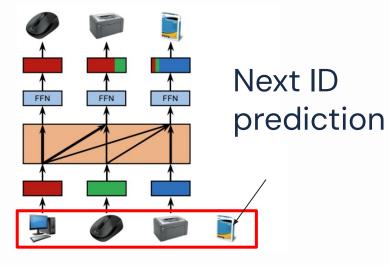
17

(1) World knowledge

LLM as sequential recommender

-> Alleviating the data sparsity of ID-based interactions in recommendation

(1) World knowledge

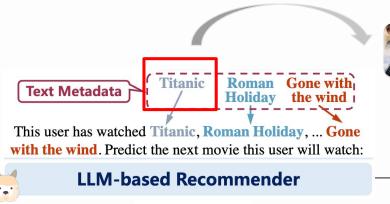


Item IDs

ID-based item modeling lack semantic meanings

Example: SASRec [*ICDM'18*]

(1) World knowledge

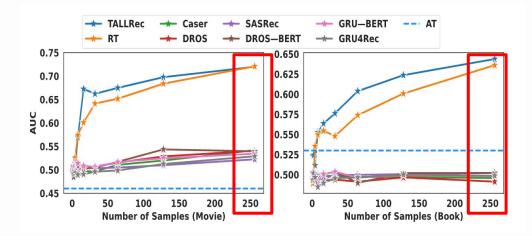


Waterloo Bridge

Titanic is a 1997 epic romance and disaster film directed by James Cameron, telling the tragic love story between Jack and Rose aboard the ill-fated RMS Titanic. It blends historical events with fictional drama, becoming one of the most iconic and emotionally powerful films of all time.

Abundant prior knowledge about items

(1) World knowledge



Few data -> a good recommender

...

(1) World knowledge

<u>LLM as sequential</u> <u>recommender</u>

Lower data requirement Cross-domain ability Cold-start ability

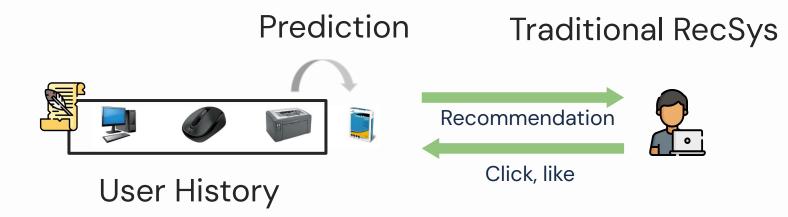
LLMs can interact with users fluently

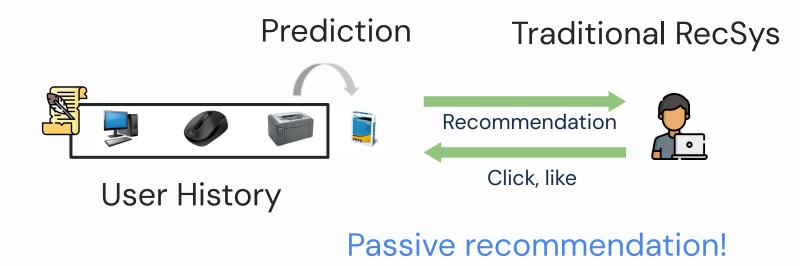
LLM as conversational recommender

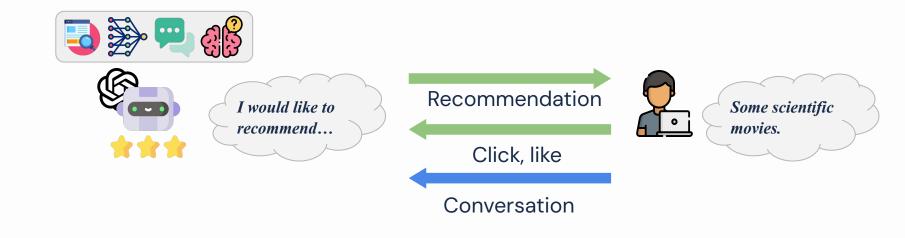
-> Towards more interactive recommender systems

Prediction

User History







\$

hello I'm open to any movie

Hi there. I would like to suggest some *comedies* you could watch, have you seen *The Wedding Singer (1998)*?

I have not seen it but I watched American Pie 2 (2001). I just watched Avengers: Infinity War (2018) and I liked it.

LLM as conversational

recommender

Interactive User-friendly More accurate

(3) Human-like behavior

(3) Human-like behavior

Generative Agents can (mostly) simulate human behaviors

- Cooperation
- Organization

(3) Human–like behavior

LLM as user simulator

-> Simulating user behaviors for evaluating recommenders.

(3) Human-like behavior

Offline recommender evaluation

Inaccurate, but affordable

(3) Human-like behavior

Online recommender evaluation



Accurate, but costly

(3) Human-like behavior



LLM as user simulator

Faithful Affordable Controllable

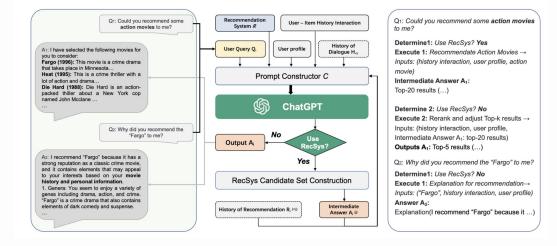
...

Part 1: LLM as Sequential Recommender

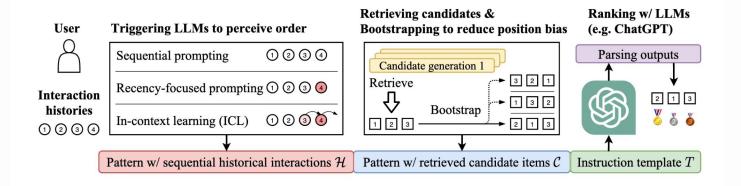
(i) **Early efforts**: Pretrained LLMs for recommendation;

• Directly use freezed LLMs (e.g., GPT 4) for recommendation.

Prompt Engineering + In-Context Learning (ChatRec) Key idea: LLMs as the recsys controller



Prompt Engineering + In-Context Learning (LLMRank) Key idea: LLMs as the reranker



- Directly use freezed LLMs (e.g., GPT 4) for recommendation.
- A performance gap compared to traditional recommenders exists.

Sub-optimal performance comparing to SASRec! Performance of LLMRank

	Method		M	L-1M		Games				
	Method	N@1	N@5	N@10	N@20	N@1	N@5	N@10	N@20	
п	Pop BPRMF [49]	0.08 0.26	1.20 1.69	$\begin{array}{c} 4.13\\ 4.41 \end{array}$	$5.79 \\ 6.04$	$0.13 \\ 0.55$	1.00 1.98	2.27 2.96	2.62 3.19	
full	SASRec 33	3.76	9.79	10.45	10.56	1.33	3.55	4.02	4.11	
zero-shot	BM25 <u>[50]</u> UniSRec <u>[30]</u> VQ-Rec <u>[29]</u>	$0.26 \\ 0.88 \\ 0.20$	$\begin{array}{c} 0.87 \\ 3.46 \\ 1.60 \end{array}$	$2.32 \\ 5.30 \\ 3.29$	$5.28 \\ 6.92 \\ 5.73$	$\begin{array}{c} 0.18 \\ 0.00 \\ 0.20 \end{array}$	$1.07 \\ 1.86 \\ 1.21$	$1.80 \\ 2.03 \\ 1.91$	$2.55 \\ 2.31 \\ 2.64$	
zei	Ours	1.74	5.22	6.91	7.90	0.90	2.26	2.80	3.08	

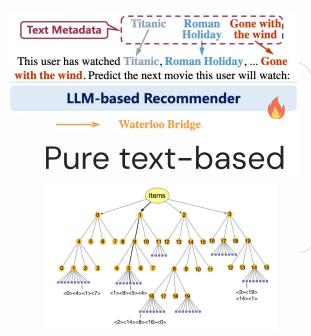
Sub-optimal performance comparing to SASRec!

Aligning LLMs for recommendation tasks is necessary!

	DUDITEC [00]	0.10	0.10	10.40	10.00	1.00	0.00	4.04	4.11
t.	BM25 50	0.26	0.87	2.32	5.28	0.18	1.07	1.80	2.55
shot	UniSRec 30	0.88	3.46	5.30	6.92	0.00	1.86	2.03	2.31
6	VQ-Rec [29]	0.20	1.60	3.29	5.73	0.20	1.21	1.91	2.64
zer	Ours	1.74	5.22	6.91	7.90	0.90	2.26	2.80	3.08

Part 1: LLM as Sequential Recommender

(i) Early efforts: Pretrained LLMs for recommendation;(ii) Aligning LLMs for recommendation;

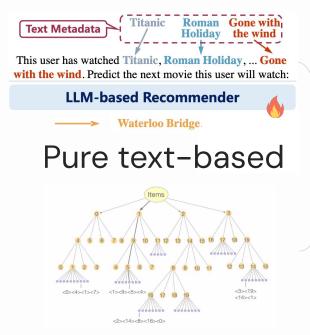


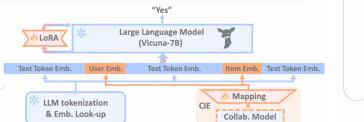
+ External item tokens

"Yes" Large Language Model (Vicuna-7B) Text Token Emb. User Emb. Text Token Emb. Item Emb. Text Token Emb. LLM tokenization & Emb. Look-up

+ Collaborative embeddings

+ Multimodal information



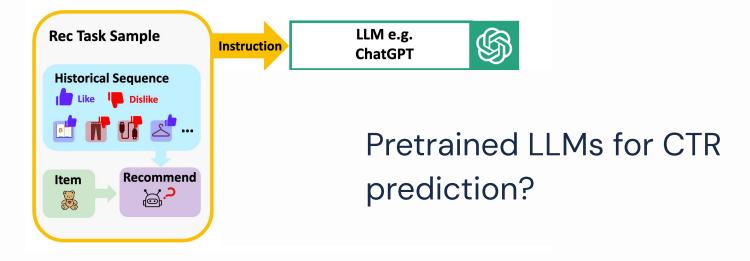


+ Collaborative embeddings

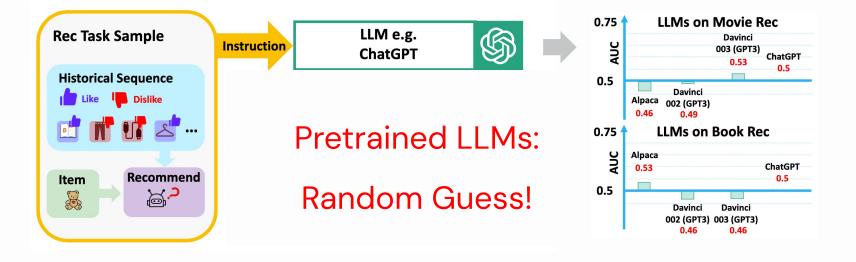
+ Multimodal information

+ External item tokens

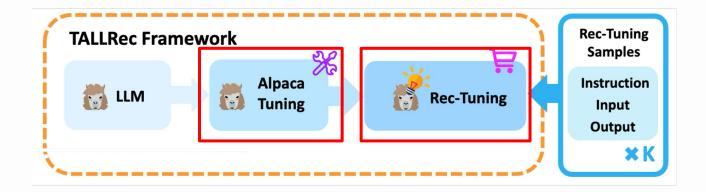
(1) Pure text-based (TALLRec)



(1) Pure text-based (TALLRec)

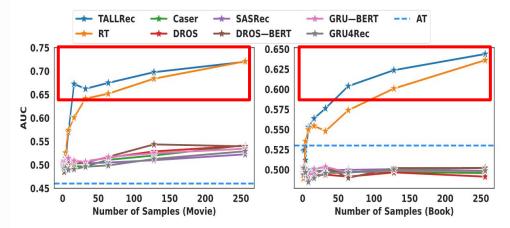


(1) Pure text-based (TALLRec)



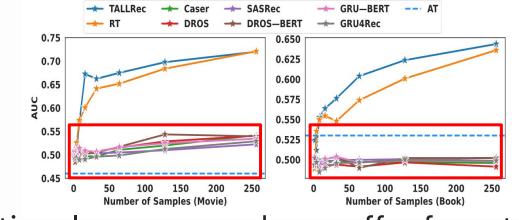
General task alignment -> Recommendation alignment

(1) Pure text-based (TALLRec)



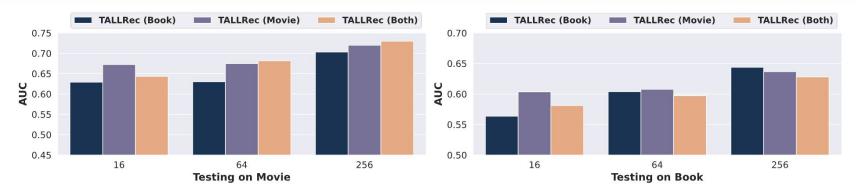
Few training data -> Huge improvements

(1) Pure text-based (TALLRec)



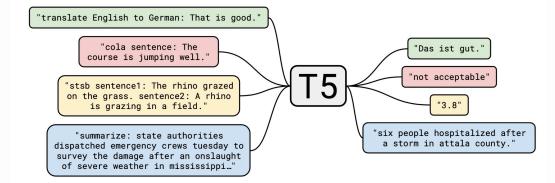
Traditional recommenders: suffer from too-sparse supervision signals

(1) Pure text-based (TALLRec)



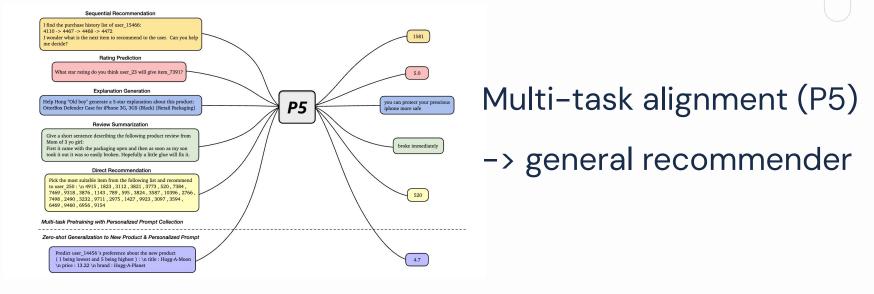
Cross-domain generalization

(1) Pure text-based - Multiple rec taks

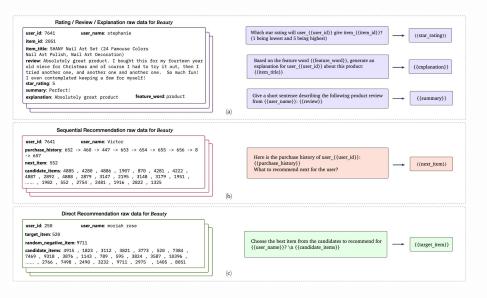


Unified language modeling in NLP

(1) Pure text-based - Multiple rec taks



(1) Pure text-based - Multiple rec taks



Training on different task prompts -> multiple recommendation abilities.

(1) Pure text-based - Multiple rec taks

Table 6: Performance comparison on review summarization (%).

		Sp	oorts			Be	auty		Toys			
Methods	BLUE2	ROUGE1	ROUGE2	ROUGEL	BLUE2	ROUGE1	ROUGE2	ROUGEL	BLUE2	ROUGE1	ROUGE2	ROUGEL
T0 (4-1)	2.1581	2.2695	0.5694	1.6221	1.2871	1.2750	0.3904	0.9592	2.2296	2.4671	0.6482	1.8424
GPT-2 (4-1)	0.7779	4.4534	1.0033	1.9236	0.5879	3.3844	0.6756	1.3956	0.6221	3.7149	0.6629	1.4813
P5-S (4-1)	2.4962	11.6701	2.7187	10.4819	2.1225	8.4205	1.6676	7.5476	2.4752	9.4200	1.5975	8.2618
P5-B (4-1)	2.6910	12.0314	3.2921	10.7274	1.9325	8.2909	1.4321	7.4000	1.7833	8.7222	1.3210	7.6134

Table 7: Performance comparison on direct recommendation.

Mathada	Sports					Beauty					Toys				
Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10
BPR-MF	0.0314	0.1404	0.0848	0.2563	0.1220	0.0311	0.1426	0.0857	0.2573	0.1224	0.0233	0.1066	0.0641	0.2003	0.0940
BPR-MLP	0.0351	0.1520	0.0927	0.2671	0.1296	0.0317	0.1392	0.0848	0.2542	0.1215	0.0252	0.1142	0.0688	0.2077	0.0988
SimpleX	0.0331	0.2362	0.1505	0.3290	0.1800	0.0325	0.2247	0.1441	0.3090	0.1711	0.0268	0.1958	0.1244	0.2662	0.1469
P5-S (5-1)	0.0638	0.2096	0.1375	0.3143	0.1711	0.0600	0.2021	0.1316	0.3121	0.1670	0.0405	0.1538	0.0969	0.2405	0.1248
P5-B (5-1)	0.0245	0.0816	0.0529	0.1384	0.0711	0.0224	0.0904	0.0559	0.1593	0.0780	0.0187	0.0827	0.0500	0.1543	0.0729
P5-S (5-4)	0.0701	0.2241	0.1483	0.3313	0.1827	0.0862	0.2448	0.1673	0.3441	0.1993	0.0413	0.1411	0.0916	0.2227	0.1178
P5-B (5-4)	0.0299	0.1026	0.0665	0.1708	0.0883	0.0506	0.1557	0.1033	0.2350	0.1287	0.0435	0.1316	0.0882	0.2000	0.1102
P5-S (5-5)	0.0574	0.1503	0.1050	0.2207	0.1276	0.0601	0.1611	0.1117	0.2370	0.1360	0.0440	0.1282	0.0865	0.2011	0.1098
P5-B (5-5)	0.0641	0.1794	0.1229	0.2598	0.1488	0.0588	0.1573	0.1089	0.2325	0.1330	0.0386	0.1122	0.0756	0.1807	0.0975
P5-S (5-8)	0.0567	0.1514	0.1049	0.2196	0.1269	0.0571	0.1566	0.1078	0.2317	0.1318	0.0451	0.1322	0.0889	0.2023	0.1114
P5-B (5-8)	0.0726	0.1955	0.1355	0.2802	0.1627	0.0608	0.1564	0.1096	0.2300	0.1332	0.0389	0.1147	0.0767	0.1863	0.0997

Table 3: Performance comparison on sequential recommendation.

Methods		Sp	orts			Be	auty		Toys			
Methods	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10
Caser	0.0116	0.0072	0.0194	0.0097	0.0205	0.0131	0.0347	0.0176	0.0166	0.0107	0.0270	0.0141
HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	0.0321	0.0221	0.0497	0.0277
GRU4Rec	0.0129	0.0086	0.0204	0.0110	0.0164	0.0099	0.0283	0.0137	0.0097	0.0059	0.0176	0.0084
BERT4Rec	0.0115	0.0075	0.0191	0.0099	0.0203	0.0124	0.0347	0.0170	0.0116	0.0071	0.0203	0.0099
FDSA	0.0182	0.0122	0.0288	0.0156	0.0267	0.0163	0.0407	0.0208	0.0228	0.0140	0.0381	0.0189
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0463	0.0306	0.0675	0.0374
S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0443	0.0294	0.0700	0.0376
P5-S (2-3)	0.0272	0.0169	0.0361	0.0198	0.0503	0.0370	0.0659	0.0421	0.0648	0.0567	0.0709	0.0587
P5-B (2-3)	0.0364	0.0296	0.0431	0.0318	0.0508	0.0379	0.0664	0.0429	0.0608	0.0507	0.0688	0.0534
P5-S (2-13)	0.0258	0.0159	0.0346	0.0188	0.0490	0.0358	0.0646	0.0409	0.0647	0.0566	0.0705	0.0585
P5-B (2-13)	0.0387	0.0312	0.0460	0.0336	0.0493	0.0367	0.0645	0.0416	0.0587	0.0486	0.0675	0.0536

Table 4: Performance comparison on explanation generation (%).

		SI	oorts			Be	auty		Toys			
Methods	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL
Attn2Seq	0.5305	12.2800	1.2107	9.1312	0.7889	12.6590	1.6820	9.7481	1.6238	13.2245	2.9942	10.7398
NRT	0.4793	11.0723	1.1304	7.6674	0.8295	12.7815	1.8543	9.9477	1.9084	13.5231	3.6708	11.1867
PETER	0.7112	12.8944	1.3283	9.8635	1.1541	14.8497	2.1413	11.4143	1.9861	14.2716	3.6718	11.7010
P5-S (3-3)	1.0447	14.9048	2.1297	11.1778	1.2237	17.6938	2.2489	12.8606	2.2892	15.4505	3.6974	12.1718
P5-B (3-3)	1.0407	14.1589	2.1220	10.6096	0.9742	16.4530	1.8858	11.8765	2.3185	15.3474	3.7209	12.1312
PETER+	2.4627	24.1181	5.1937	18.4105	3.2606	25.5541	5.9668	19.7168	4.7919	28.3083	9.4520	22.7017
P5-S (3-9)	1.4101	23.5619	5.4196	17.6245	1.9788	25.6253	6.3678	19.9497	4.1222	28.4088	9.5432	22.6064
P5-B (3-9)	1.4689	23.5476	5.3926	17.5852	1.8765	25.1183	6.0764	19.4488	3.8933	27.9916	9.5896	22.2178
P5-S (3-12)	1.3212	23.2474	5.3461	17.3780	1.9425	25.1474	6.0551	19.5601	4.2764	28.1897	9.1327	22.2514
P5-B (3-12)	1.4303	23.3810	5.3239	17.4913	1.9031	25.1763	6.1980	19.5188	3.5861	28.1369	9.7562	22.3056

Single LLM -> Effective on various recommendation tasks

(1) Pure text-based (P5)

Multi-scenario Recommendation: The items the user has recently clicked on are as follows: {USER BEHAVIOR SE-QUENCE}. In scenario {SCENE}, please recommend items. Multi-objective Recommendation: The items the user has recently clicked on are as follows: {USER BEHAVIOR SE-QUENCE}. Please find items that the user will {ACTION}.

Long-tail Item Recommendation: The items the user has recently clicked on are as follows: {USER BEHAVIOR SE-

QUENCE}. Please recommend long-tail items.

Serendipity Recommendation: The items the user has recently clicked on are as follows: {USER BEHAVIOR SEQUENCE}.

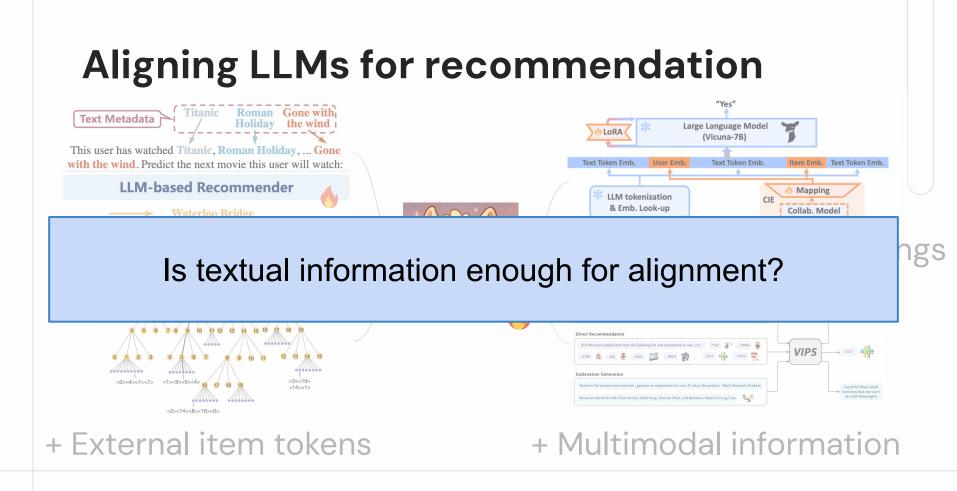
Please recommend some new item categories.

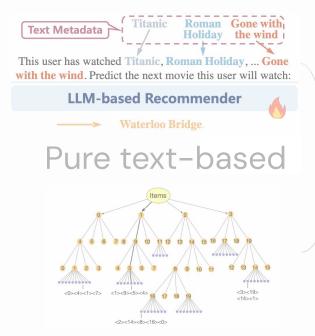
Long-term Recommendation: The items the user has recently clicked on are as follows: {USER BEHAVIOR SEQUENCE}.

Please find items that match the user's long-term interests.

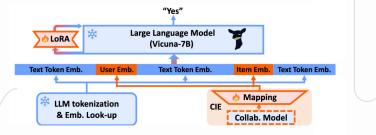
Search Problem: The items the user has recently clicked on are as follows: {USER BEHAVIOR SEQUENCE}. Please recommend items that match {OUERY}. URM:

Unify recommendation & search





+ External item tokens



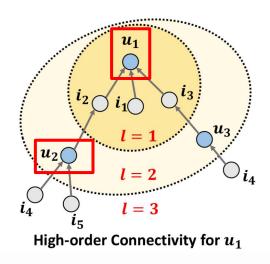
+ Collaborative embeddings

+ Multimodal information

(2) + Collaborative embeddings

Motivation:

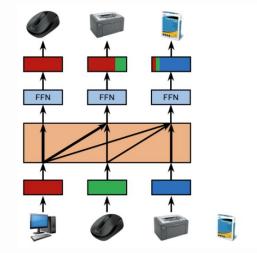
Language modeling may not capture collaborative information



(2) + Collaborative embeddings

Solution:

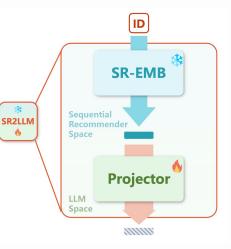
Aligning LLMs with embeddings from traditional recommenders



(2) + Collaborative embeddings (LLaRA)

+ Pretrained item embeddings

(a) Text-only prompting method.	(b) Hybrid prompting method.
Input: This user has watched Titanic [PH], Roman Holiday	Input: This user has watched Titanic [emb _s ¹⁴], Roman Holiday
[PH], Gone with the wind [PH] in the previous. Please	$[emb_s^{20}]$, Gone with the wind $[emb_s^{37}]$ in the previous. Please
predict the next movie this user will watch. The movie title	predict the next movie this user will watch. The movie title
candidates are The Wizard of Oz [PH], Braveheart [PH],,	candidates are The Wizard of Oz [emb _s ⁵], Braveheart [emb _s ⁴²],,
Waterloo Bridge [PH], Batman & Robin [PH]. Choose	Waterloo Bridge [emb _s ²⁰], Batman & Robin [emb _s ¹⁹]. Choose
only one movie from the candidates. The answer is	only one movie from the candidates. The answer is
Output: Waterloo Bridge.	Output: Waterloo Bridge.

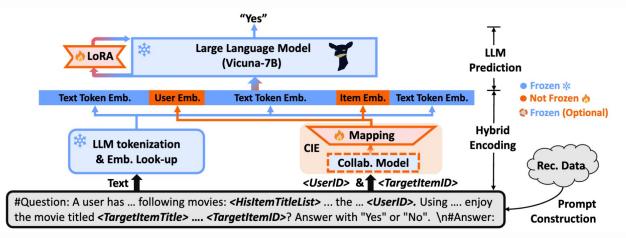


(2) + Collaborative embeddings (LLaRA)

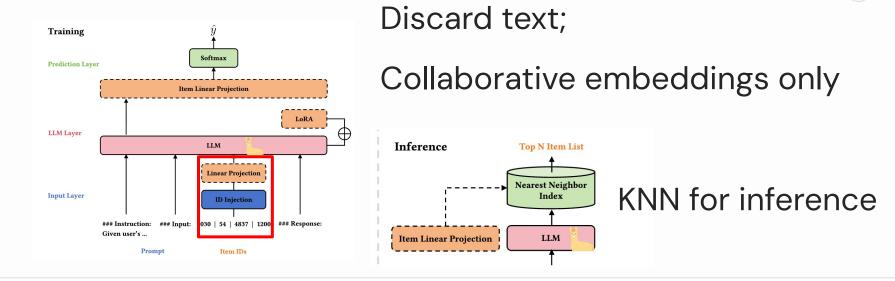
+ Pretrained item embeddings

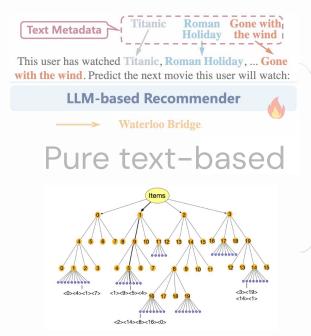
(2) + Collaborative embeddings (CoLLM)

+ Pretrained item embeddings + user embeddings

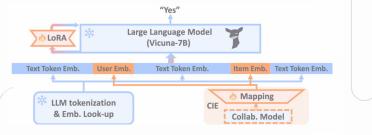


(2) + Collaborative embeddings (E4SRec)





+ External item tokens



+ Collaborative embeddings

+ Multimodal information

(3) + External item tokens

Motivation:

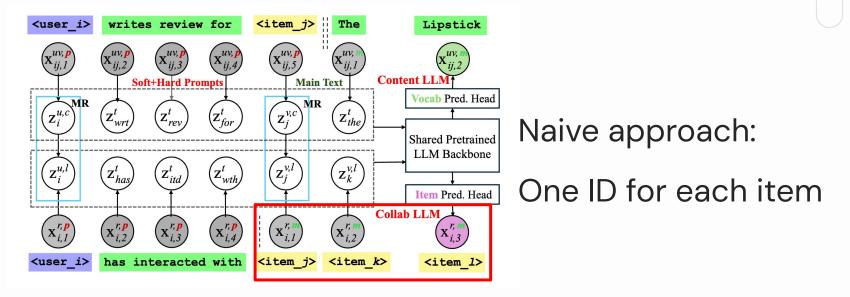
Tokens for language modeling are not optimal for recommendation.

(3) + External item tokens

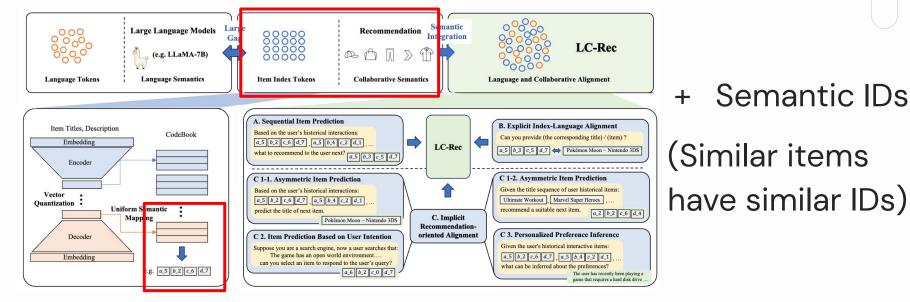
Motivation:

Tokens for language modeling are not optimal for recommendation. Maybe better? Harry Potter Tokenizer Harry Potter

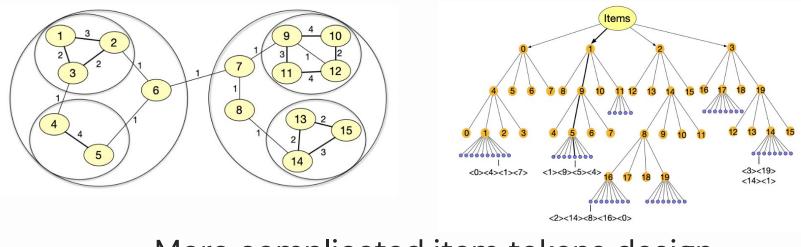
(3) + External item tokens (CLLM4Rec)



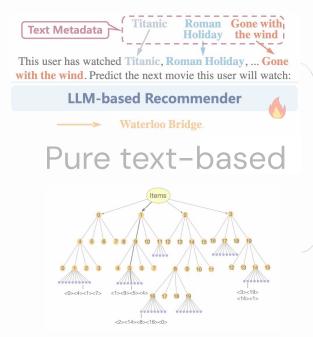
(3) + External item tokens (LC-Rec)



(3) + External item tokens

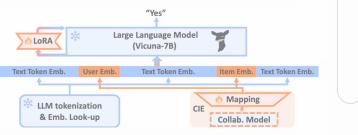


More complicated item tokens design



+ External item tokens

Text Token E



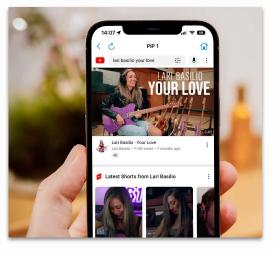
+ Collaborative embeddings

+ Multimodal information

(4) + Multimodal information

Motivation:

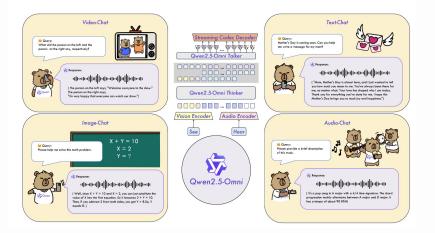
Human make decisions with multimodal information.



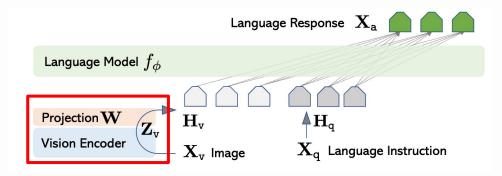
(4) + Multimodal information

Motivation:

Post-trained LLM can understand multimodal information

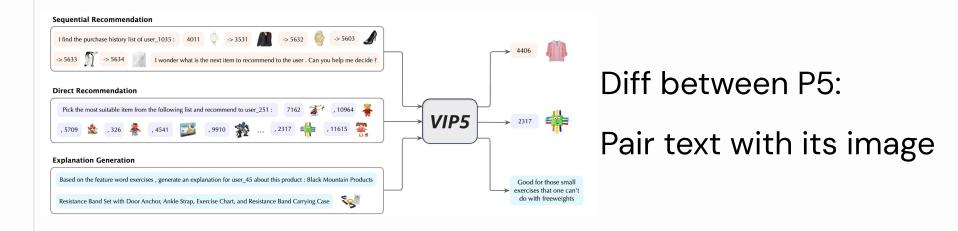


(4) + Multimodal information

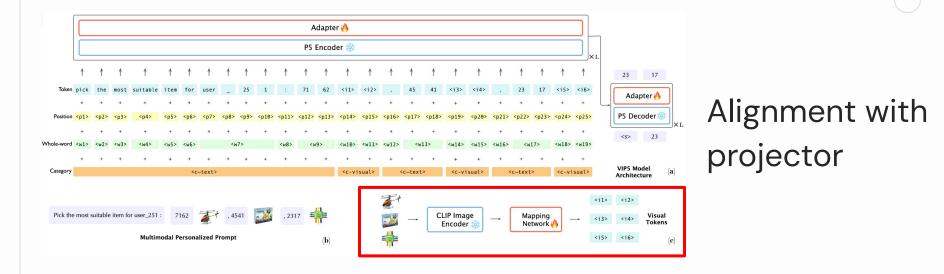


Aligning vision and language with a projector

(4) + Multimodal information (VIP5)



(4) + Multimodal information (VIP5)



(4) + Multimodal information (VIP5)

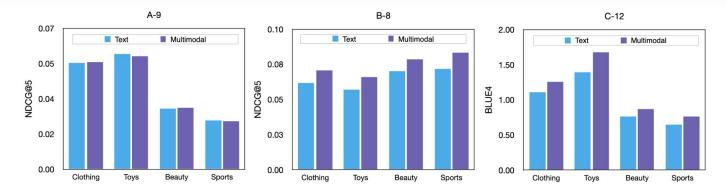
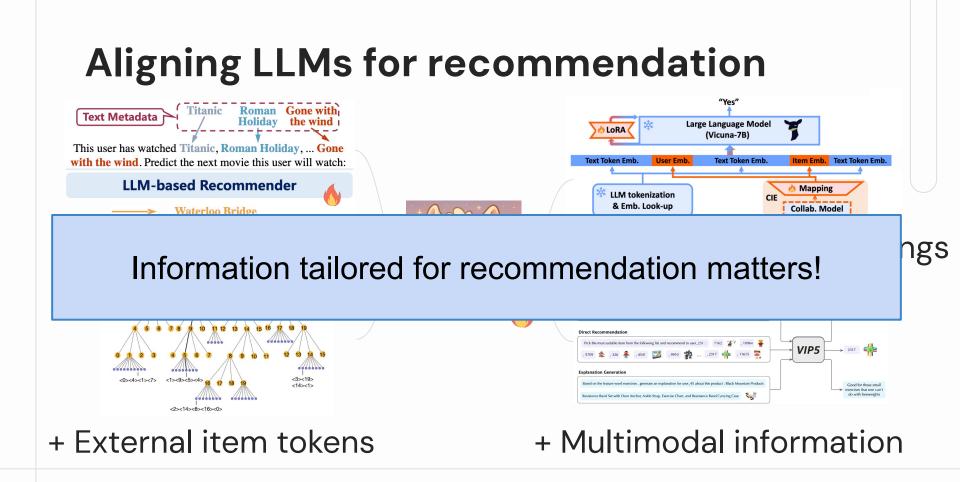


Figure 3: Performance comparison between text-based prompt and multimodal prompt.

Multimodal information is important



Part 1: LLM as Sequential Recommender

(i) Early efforts: Pretrained LLMs for recommendation;
(ii) Aligning LLMs for recommendation;
(iii) Training objective & inference

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, … Gone with the wind. Predict the next movie I will watch: Waterloo Bridge. Prediction

81

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch: Waterloo Bridge.

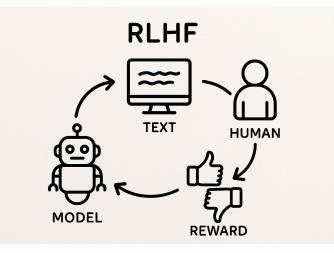
Prediction

(1) Supervised finetuning (SFT)

$$\mathcal{L}_{ ext{SFT}}(heta) = -\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\sum_{t=1}^T \log P_ heta(y_t \mid y_{< t})
ight]$$

Always predict the next token

(2) Preference learning



LLMs are trained to align human preferences

Recommendation is about user preferences

(2) Preference learning

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

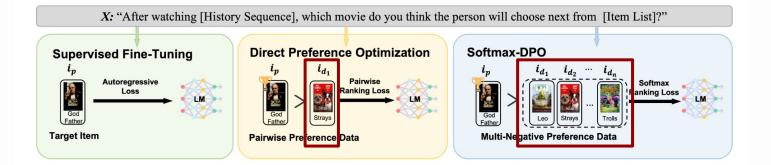
(2) Preference learning

$$\mathcal{L}_{ ext{DPO}} = -\mathbb{E}_{(x_u, e_p, e_d)} \left[\log \sigma \left(eta \log rac{\pi_{ heta}(e_p | x_u)}{\pi_{ ext{ref}}(e_p | x_u)} - eta \log rac{\pi_{ heta}(e_d | x_u)}{\pi_{ ext{ref}}(e_d | x_u)}
ight)
ight],$$

Direct Preference Optimization!

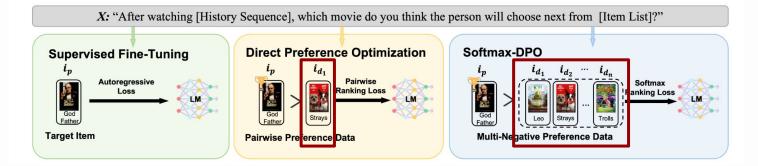
I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

(2) Preference learning



Single negative — Multiple negatives

(2) Preference learning

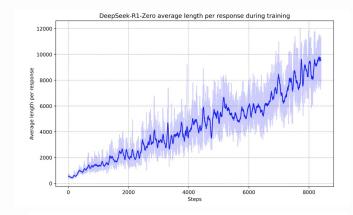


$$\mathcal{L}_{\text{S-DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x_u, e_p, \mathcal{E}_d) \sim \mathcal{D}} \left[\log \sigma \left(-\log \sum_{e_d \in \mathcal{E}_d} \exp\left(\beta \log \frac{\pi_{\theta}(e_d | x_u)}{\pi_{\text{ref}}(e_d | x_u)} - \beta \log \frac{\pi_{\theta}(e_p | x_u)}{\pi_{\text{ref}}(e_p | x_u)} \right) \right) \right]$$

(3) Reinforce learning

Emergent reasoning capabilities through RL

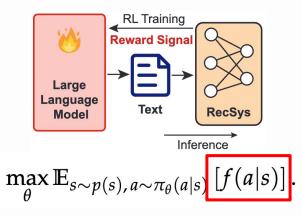
$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)] \\ \frac{1}{G} \sum_{i=1}^G \left(\min\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)} A_i, \operatorname{clip}\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon\right) A_i \right) - \beta \mathbb{D}_{KL}\left(\pi_{\theta} | | \pi_{ref}\right) \right),$$
(1)
$$\mathbb{D}_{KL}\left(\pi_{\theta} | | \pi_{ref}\right) = \frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - \log\frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - 1,$$
(2)



Question: If a > 1, then the sum of the real solutions of $\sqrt{a - \sqrt{a + x}} = x$ is equal to

Response: <think> To solve the equation $\sqrt{a - \sqrt{a + x}} = x$, let's start by squaring both \cdots $\left(\sqrt{a - \sqrt{a + x}}\right)^2 = x^2 \implies a - \sqrt{a + x} = x^2$. Rearrange to isolate the inner square root term: $(a - x^2)^2 = a + x \implies a^2 - 2ax^2 + (x^2)^2 = a + x \implies x^4 - 2ax^2 - x + (a^2 - a) = 0$ \cdots Wait, wait. Wait. That's an aha moment I can flag here. Let's reevaluate this step-by-step to identify if the correct sum can be \cdots We started with the equation: $\sqrt{a - \sqrt{a + x}} = x$ First, let's square both sides: $a - \sqrt{a + x} = x^2 \implies \sqrt{a + x} = a - x^2$ Next, I could square both sides again, treating the equation: \cdots

(3) Reinforce learning



Maximize the reward from recommender system

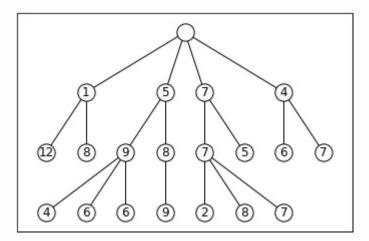
Prompt Template for REC-R1 + Dense Retriever (Product Search)

You are an expert in generating queries for dense retrieval. Given a customer query, your task is to retain the original query while expanding it with additional semantically relevant information, retrieve the most relevant products, ensuring they best meet customer needs. If no useful expansion is needed, return the original query as is.

Below is the query: {user_query}

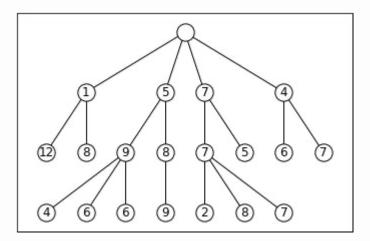
<\im_start|>system
You are a helpful AI assistant. You first think about the reasoning process
in the mind and then provide the user with the answer.
<\im_end|>
<\im_start|>user
[PROMPT as above]
Show your work in <think>\think> tags. Your final response must be in JSON
format within <answer>\answer> tags. For example,
<answer>
{ "query": xxx }
</answer>.
<\iim_end|>
<\im_start|>assistant
Let me solve this step by step.

(1) Beam Search



Generating answers with the top-k highest scored beams

(1) Beam Search



It may generate invalid items

In RecSys : No Hallucination permitted!

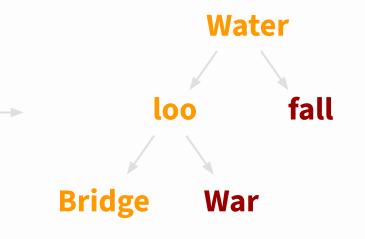
(2) Constrained Beam Search

Valid items:

Waterloo Bridge, Waterfall Story, and Waterloo War How to make the generated items always valid?

(2) Constrained Beam Search

Valid items: Waterloo Bridge, Waterfall Story, and Waterloo War



Constrained search tree

(2) Constrained Beam Search

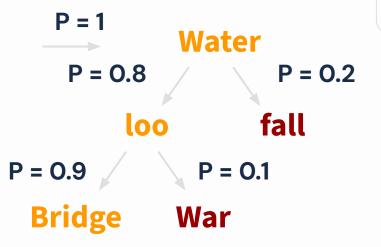
I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

(2) Constrained Beam Search

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

(2) Constrained Beam Search

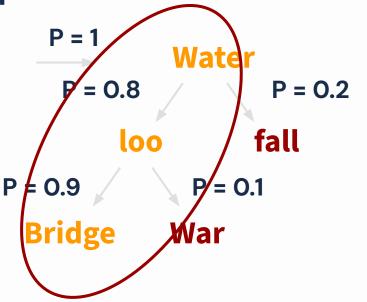
I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:



(2) Constrained Beam Search

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

Valid Item!



(3) Special design

$$\mathcal{S}(h_{\leq t}) = \mathcal{S}(h_{\leq t-1}) + \log(p(h_t|x, h_{\leq t-1})),$$

$$\mathcal{S}(h) = \mathcal{S}(h) / h_L^{lpha},$$

Length penalty in beam search; Human does not like over long sentences.

Redundant for recommendation

(3) Special design

$$\mathcal{S}(h_{\leq t}) = \mathcal{S}(h_{\leq t-1}) + \log(p(h_t|x, h_{\leq t-1})),$$

$$\mathcal{S}(h) = \mathcal{S}(h) / \mathbf{K},$$

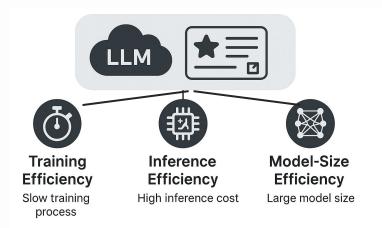
Remove length penalty

	Instruments	Books	CDs	Sports	Toys	Games	_
Baseline	0.1062	0.0308	0.0956	0.1171	0.0965	0.0610	Imp when removing
D^3	0.1111	0.0354	0.1190	0.1215	0.1025	0.0767	
- RLN	0.1093	0.0353	0.1000	0.1200	0.0975	0.0659	
- TFA	0.1086	0.0309	0.1115	0.1192	0.1006	0.0732	

Part 1: LLM as Sequential Recommender

(i) Early efforts: Pretrained LLMs for recommendation;
(ii) Aligning LLMs for recommendation;
(iii) Training objective & inference
(iiii) Efficiency

A crucial question in real-world deployment



A crucial question in real-world deployment

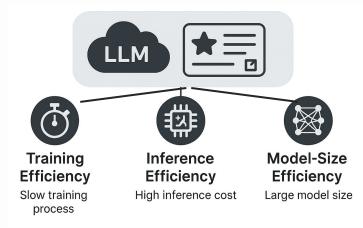


Training efficiency:

LLM: update by months

Recommender: update by hours

A crucial question in real-world deployment

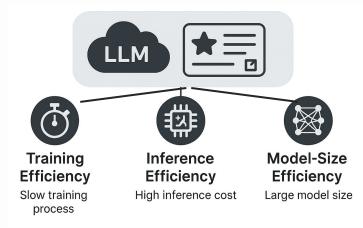


Inference efficiency:

LLM: wait for seconds

Recommender: wait for milliseconds

A crucial question in real-world deployment



Model-size efficiency:

LLM: serve for millions

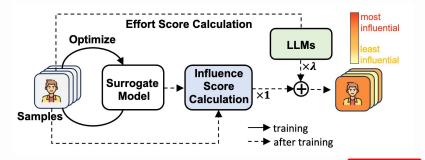
Recommender: serve for billions

(1) Training efficiency

Source	#Examples							
Training		LIMA	wins	т	ie	1	_IMA Los	ses
Stack Exchange (STEM) Stack Exchange (Other) wikiHow	200 200 200	Alpaca 65B -		53%	2	1%	26%	
Pushshift r/WritingPrompts Natural Instructions	150 50	DaVinci003 -	44%		21%		35%	
Paper Authors (Group A)	200	BARD (April) -	33%	2	5%	4	42%	
Dev		Claude (April) -	24%	22%		54%	6	
Paper Authors (Group A)	50	GPT-4 (April) -	18%	25%		57%		
Test Pushshift r/AskReddit Paper Authors (Group B)	70 230	6% 0%	ó 2	25%	50%	75	% 1	1009

Loses	Less is more for alignment
	1k high quality examples ->
100%	Surpass large scale training

(1) Training efficiency

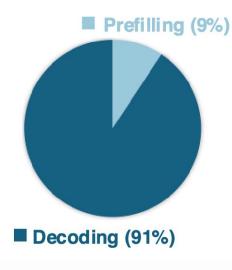


	R@10↑	R@20↑	Games N@10↑	N@20↑	Time↓
Full DEALRec	0.0169 0.0181	0.0233	0.0102	0.0120 0.0142	36.87h 1.67h
% Improve.	7.10%	18.45%	12.75%	18.33%	-95.47%

Select the most informative examples ->

Reducing 95% training time

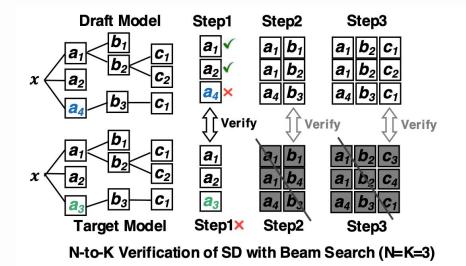
(2) Inference efficiency



Autoregressive paradigm in LLM

-> huge time on the decoding stage

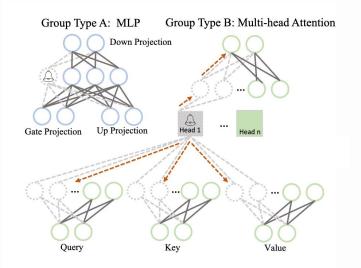
(2) Inference efficiency



Speculative decoding:

Decoder acceleration with a small-size draft model

(3) Model-size efficiency - Pruning



Similar performance with

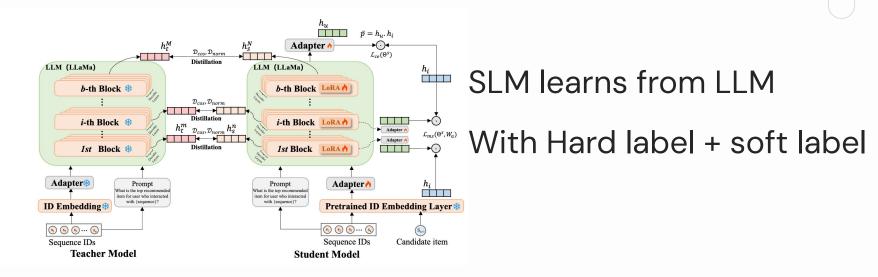
0.6% parameters

		Tasks				
Method	#Params	TNEWS ↑	IFLYTEK ↑	CSL↑		
M6-base	327M	0.598	0.631	0.852		
ALBERT-zh-base M6-Edge	12M 10M	0.550 0.552	0.564 0.586	0.785 0.831		
ALBERT-zh-tinv	4M	0.534	0.488	0.750		
M6-Edge, Pruned	2M	0.537	0.559	0.798		

110

Ma et al. LLM-Pruner: On the Structural Pruning of Large Language Models. NeurIPS 2023 Cui et al. M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems. arXiv: 2205.08084.

(3) Model-size efficiency - Distillation



(3) Model-size efficiency - Distillation

M- J-1	ſ	Music					Deal		
Model HR@1	HR@1	HR@5	NDCG@5	MRR	HR@1	HR@5	NDCG@5	MRR	Ranl
Caser	0.71	3.28	1.96	2.29	1.05	3.75	2.39	2.84	13.50
GRU4Rec	1.89	3.22	2.57	3.08	5.26	7.75	6.52	7.08	10.13
BERT4Rec	2.10	3.16	2.64	3.11	4.81	6.70	5.79	6.26	10.63
SASRec	1.82	5.72	3.79	4.51	4.70	8.43	6.59	7.24	8.75
HGN	2.01	5.49	3.82	4.17	3.42	6.24	4.83	5.30	10.50
LightSANs	1.05	4.06	2.54	3.00	5.18	8.94	7.07	7.72	8.25
S ³ -Rec	2.48	7.37	4.94	4.68	4.14	8.49	6.89	7.35	6.88
DuoRec	1.84	4.50	3.19	3.04	4.13	8.81	7.03	6.64	9.13
MAERec	2.19	6.35	4.67	3.96	4.01	8.35	6.65	6.98	8.63
Open-P5	4.35	8.12	6.74	-	5.49	8.50	6.92	-	5.33
E4SRec	5.62	9.29	7.50	7.98	6.40	9.67	8.05	8.70	1.75
E4SRec ₈	5.46	8.86	7.21	7.74	5.48	8.63	7.06	7.76	3.63
E4SRec ₄	5.33	8.75	7.08	7.59	5.41	8.65	7.04	7.72	4.50
$SLMRec_{4\leftarrow 8}$	5.72	9.15	7.48	8.03	6.62	9.83	8.25	8.89	1.25

Table 3: Experimental results (%) on the Music and Sport dataset.

Reduced model-size;

Reduced inference time

Method	Tr time(h)	Inf time(h)		Tr params (B)	Inf params (B)
Open-P5 $_{LLaMa}$	0.92	4942		0.023	7.237
E4SRec	3.95	0.415		0.023	6.631
$\mathbf{SLMRec}_{4\leftarrow 8}$	0.60	0.052		0.003	0.944
			J		

Part 1: LLM as Sequential Recommender

(1) Early efforts: pretrained LLMs for rec (2) Aligning LLMs for recommendation

- Pure text-based
 Collaborative embeddings
- External item tokens Multimodal information

(3) Training objective & inference **Inference**: (constrained) beam search **Training**: SFT, DPO, RL;

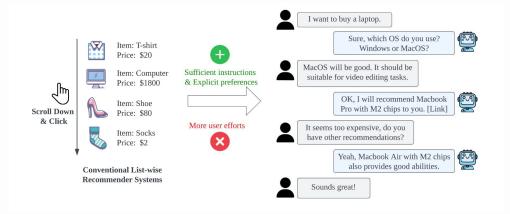
(4) Efficiency

Data efficiency; Inference efficiency; Model-size efficiency

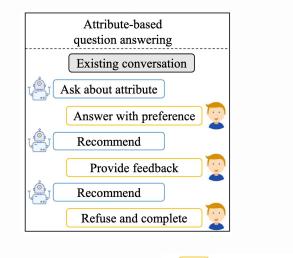
Part 2: LLM as Conversational Recommender

Conversational Recommender System (CRS)

- Recommendations with multiple turns conversation
- Interactive; engaging users in the loop



Attribute-based

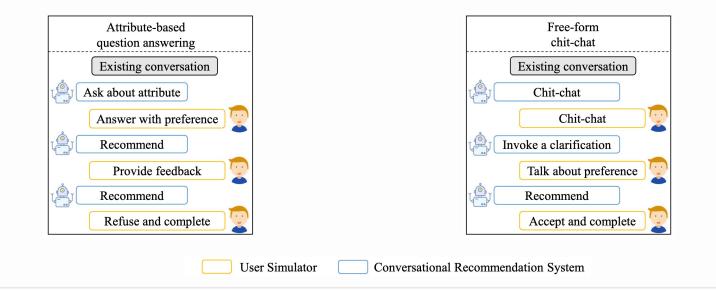


User Simulator

Conversational Recommendation System

Attribute-based

Free-form



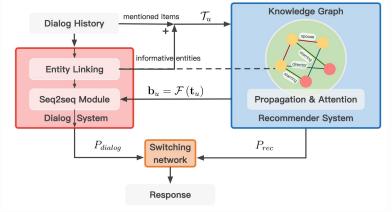
Features: <u>Task-specific</u> conversational recommenders, trained on <u>limited conversation data</u>.

Features: <u>Task-specific</u> conversational recommenders, trained on <u>limited conversation data</u>.

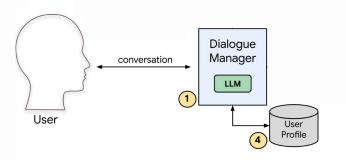
- Lack of world knowledge.
- Requirement of complicated strategies.
- Incompatible natural language generation abilities.
- Lack of generalization capabilities.

Traditional CRS: KBRD

- End-to-end conversational recommender system
- Switching between conversation and recommendation
- External knowledge from knowledge graph

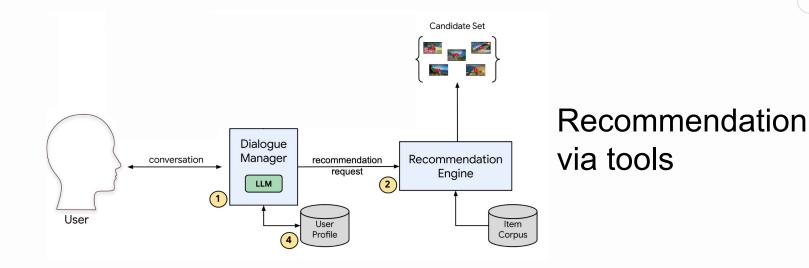


Framework (RecLLM)

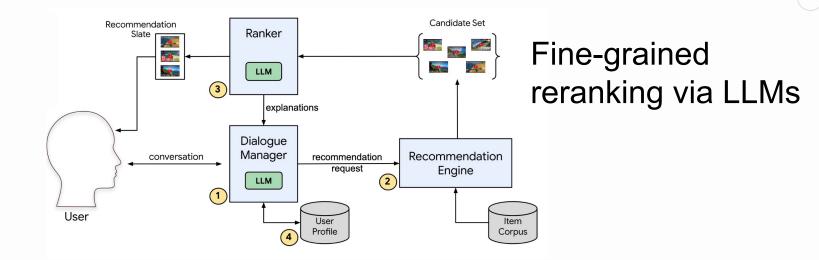


Conversation with users via LLMs

Framework (RecLLM)

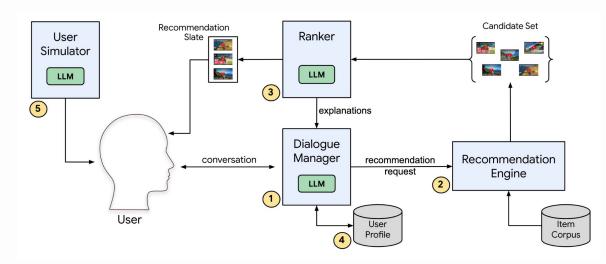


Framework (RecLLM)

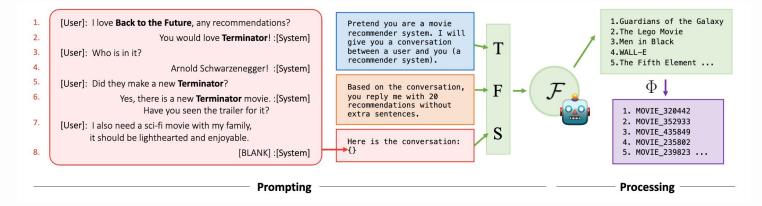


Framework (RecLLM)

Evaluation via LLMs

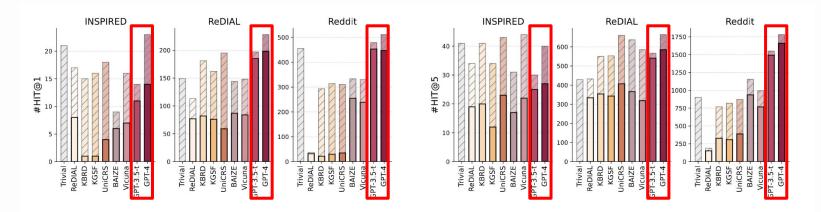


LLMs as zero-shot CRS



How powerful are LLMs for zero-shot CRS?

LLMs as zero-shot CRS

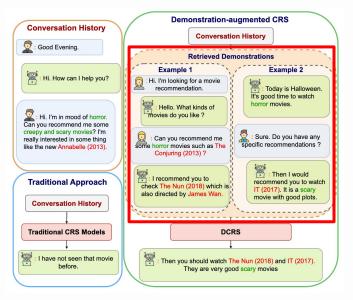


Can surpass traditional CRSs!

LLM as Conversational Recommender LLMs as zero-shot CRS **INSPIRED** ReDIAL Reddit **INSPIRED** ReDIAL Reddit Towards better LLM-based CRS? Trivial -eDIAL -KBRD -KGSF -NICRS -DICRS -BAIZE -Trivial -(eDIAL -KBRD -KGSF -IniCRS -BAIZE -*I*rcuna -*I*rcuna -*I*rcuna -*G*PT-4 -Trivial -eDIAL -KBRD -KGSF -niCRS -BAIZE -ficuna -ficuna -ficuna -GPT-4 -EDIAL -KBRD -KGSF -KBRD-KBRD-KGSF-KGSF-NiCRS-BAIZE-Vicuna-Cana-KBRD-KGSF-Cana-Ca

Can surpass traditional CRSs!

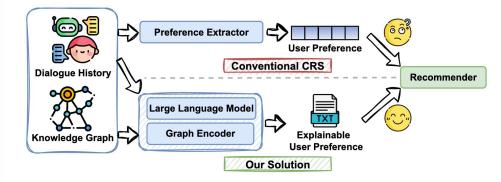
+ Demonstration



Prompting with previously successful conversation

Relevant conversation history helps!

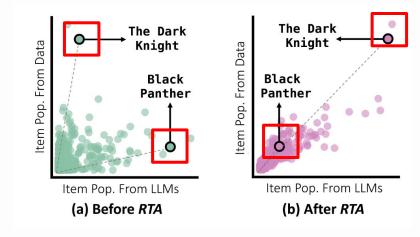
+ Knowledge graph



Recommendation-spe cific knowledge graph helps

Qiu et al. Unveiling User Preferences: A Knowledge Graph and LLM-Driven Approach for Conversational Recommendation. arXiv:2411.14459

+ Collaborative information



Collaborative information (e.g., popularity) helps LLMs fit the real distribution in CRS

Challenges – Datasets

Public datasets for CRS are limited, due to the scarcity of conversational products and real-world CRS datasets

Challenges – Evaluation

Traditional metrics like NDCG and BLEU are often insufficient to assess user experience

Challenges – Product

What is the form of LLM-based CRS products?

ChatBot? Search bar? Independent App?

Part 2: LLM as Conversational Recommender

(1) LLMs show potential in CRS

(2) LLM-based CRS can be improved with:

demonstration, collaborative information ...

(3) Challenges in LLM-based CRSs:

dataset, evaluation, and product

Part 3: LLM as User Simulator

User simulators before the era of LLM

RL-based user simulator

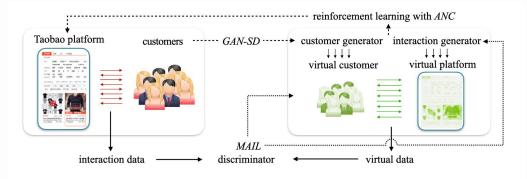
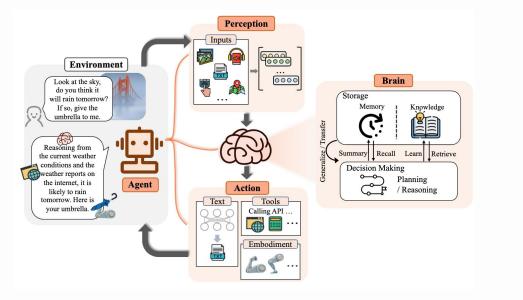


Figure 1: Virtual-Taobao architecture for reinforcement learning.

High sampling cost Overfitting risks Training instability Limited action space

Shi et al. Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforcement Learning. AAAI 2019. 137

Generative agents



Perception Planning Memory Action

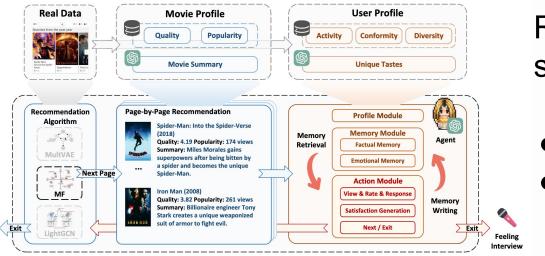
...

Generative agents for recommendation

Human-like behavior Abundant action space Reduced training cost

. . .

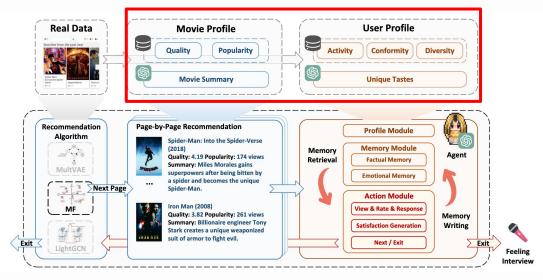
Generative agents for recommendation



Realworld-like simulation paradigm

- 1000 users
- Page-by-page simulation

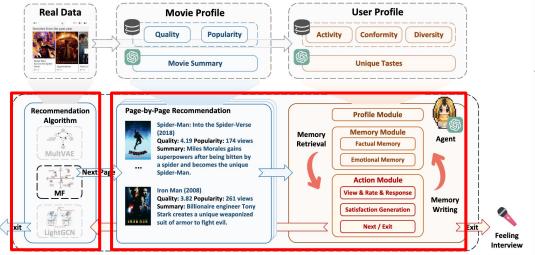
Generative agents for recommendation



Realworld-like simulation paradigm

- 1000 users
- Page-by-page simulation

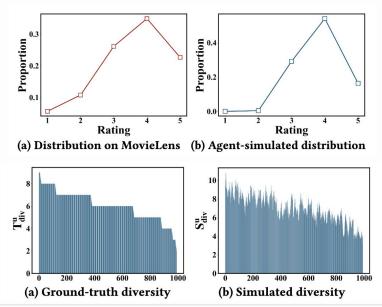
Generative agents for recommendation



Realworld-like simulation paradigm

- 1000 users
- Page-by-page simulation

Generative agents for recommendation



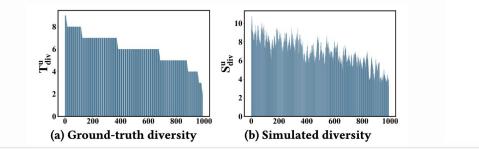
Aligned user preferences & Recommender evaluation

	P _{view}	\overline{N}_{like}	\overline{P}_{like}	\overline{N}_{exit}	\overline{S}_{sat}
Random	0.312	3.3	0.269	2.99	2.93
Рор	0.398	4.45	0.360	3.01	3.42
MF	0.488	6.07*	0.462	3.17*	3.80
MultVAE	0.495	5.69	0.452	3.10	3.75
LightGCN	0.502*	5.73	0.465*	3.02	3.85

Generative agents for recommendation

Alianed user preferences

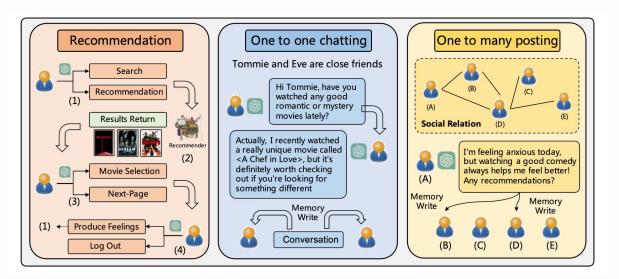
How to make the simulation more faithful?



E 0.3

	\overline{P}_{view}	\overline{N}_{like}	\overline{P}_{like}	\overline{N}_{exit}	\overline{S}_{sat}
Random	0.312	3.3	0.269	2.99	2.93
Рор	0.398	4.45	0.360	3.01	3.42
MF	0.488	6.07*	0.462	3.17*	3.80
MultVAE	0.495	5.69	0.452	3.10	3.75
LightGCN	0.502*	5.73	0.465*	3.02	3.85*

+ Social behaviors



Recommendation Chat Networking

+ Multiturn conversation

User ID: A1EXXXXXDUE6B0

Historical Interactions: ["Robin Williams: Live On Broadway", "Mission Impossible on VHS", "Solaris", "Elysium", "Wall Street", "Mystic River", ...]

Conversation 1:

[User] Hi, I recently watched **Mission Impossible on VHS** and it was a fantastic high-tech spy movie! Tom Cruise gave ...

[Agent] That's great to hear! I have a movie recommendation for you based on your likes. How about checking out World War Z?

[User] Oh, I'm definitely interested. Can you tell me more about the movie?

[Agent] Certainly! World War Z is a good zombie war flick...

Conversation 2:

[User] Hi, I recently watched the movie "**Solaris**" and I have to say, I didn't enjoy it at all. It felt overly melodramatic and lacked substance... **[Agent]** I understand why you didn't like "Solaris". I can recommend a movie you might enjoy instead. How about "**Elysium**"? It's a bilingual film that...

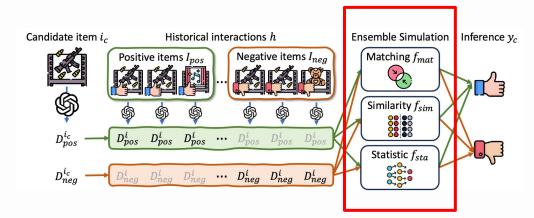
[User] Oh, I've actually already watched "Elysium" and it was better than I expected, but still not great....

[Agent] How about giving "Wrecking Crew" a try? It's another movie you might like based on your previous preferences...

[User] Sure, that sounds interesting...

Simulating users in the conversational scenarios

+ Multi-facet simulation objective



Category matching Fine-grained similarity Statistic information

+ Multi-facet simulation objective

Dataset	Metric	PPO	TRPO	A2C	DQN
Yelp	A. Rwd↑	9.97	13.45	24.15	27.56
	T. Rwd↑	141.57	157.42	267.60	330.98
	Liking%↑	34.59	40.07	48.35	49.43
Amazon	A. Rwd↑	10.49	11.31	13.45	16.70
Music	T. Rwd↑	129.03	140.15	141.03	181.42
	Liking%↑	29.30	32.46	29.54	33.18
Amazon Games	A. Rwd↑	18.72	21.35	27.56	26.43
	T. Rwd↑	208.43	242.26	317.56	269.02
	Liking%↑	33.15	37.64	43.52	40.73
Amazon Movie	A. Rwd↑	29.42	27.47	31.72	38.60
	T. Rwd ↑	310.69	301.40	354.34	416.18
	Liking%↑	38.59	36.70	42.37	44.50
Anime	A. Rwd↑	14.12	14.58	21.50	18.03
	T. Rwd ↑	155.74	163.44	242.95	201.94
	Liking%↑	25.46	24.27	31.52	30.67

Reliable environment for RL-based recommenders

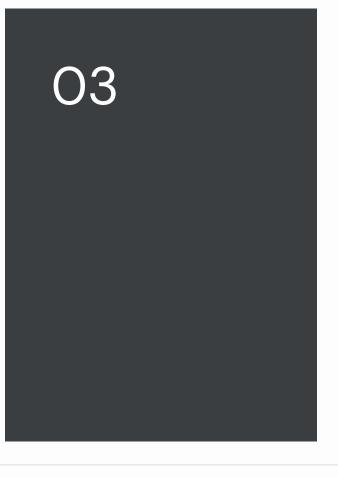
Part 3: LLM as User Simulator

(1) RL-based simulators are limited in action space, action space, and training instability

(2) LLMs open up a new paradigm for simulating users

(3) They can give feedback for RL-based recommenders

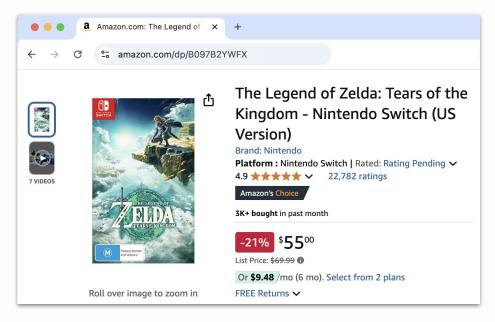
(4) Challenges: scaling, training, industry deployment



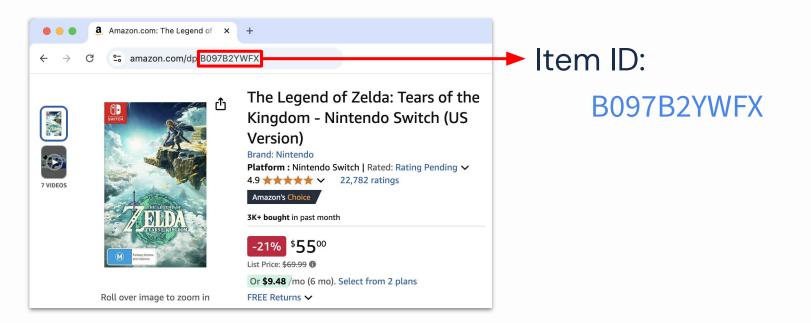
Semantic ID

-based Generative Recommendation

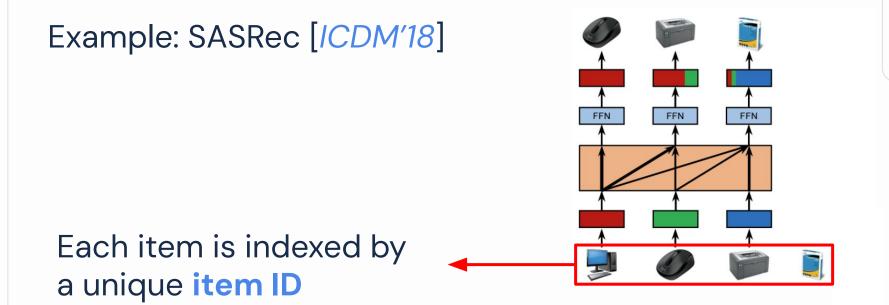
How to Index an Item in RecSys?



How to Index an Item in RecSys?

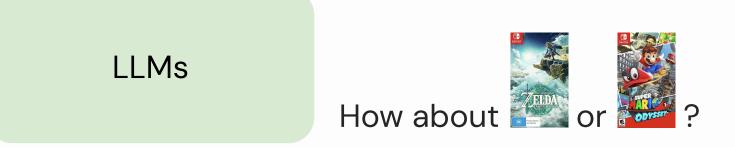


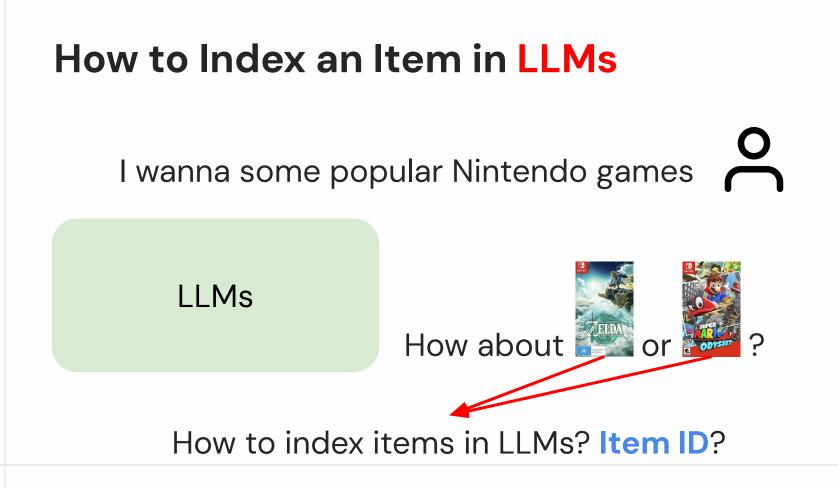
How to Index an Item in RecSys?



I wanna some popular Nintendo games

I wanna some popular Nintendo games





How many tokens in LLMs?

🔿 Meta	Llama 3	~128,000	
(S) OpenAl	GPT-4o	~200,000	
Google DeepMind	Gemma 2	~256,000	

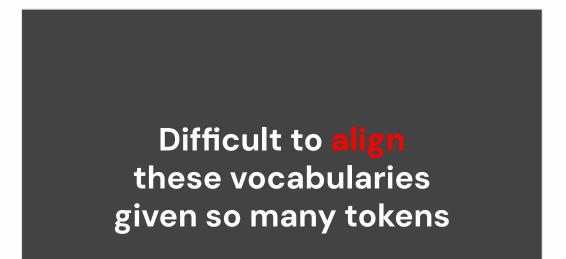
How many tokens in LLMs?

🔿 Meta	Llama 3	~128,000	
S OpenAl	GPT-4o	~200,000	
Google DeepMind	Gemma 2	~256,000	

How many item IDs?

Amazon-Reviews-2023

How many tokens/item IDs in LLMs/RecSys?



~128,000 ~200,000 ~256,000 ~48,200,000

Is there a way to index a large volume of items using a compact vocabulary?

Semantic IDs

(also called: SemID or SID)

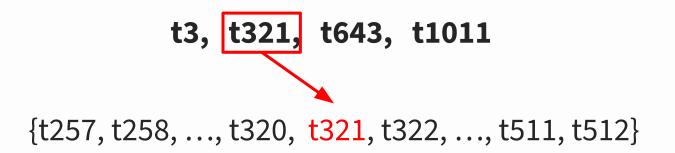
A few tokens that jointly index one item.

t3, t321, t643, t1011

Semantic IDs

(also called: SemID or SID)

A few tokens that jointly index one item.



Each token from a vocabulary shared by all items

Semantic IDs

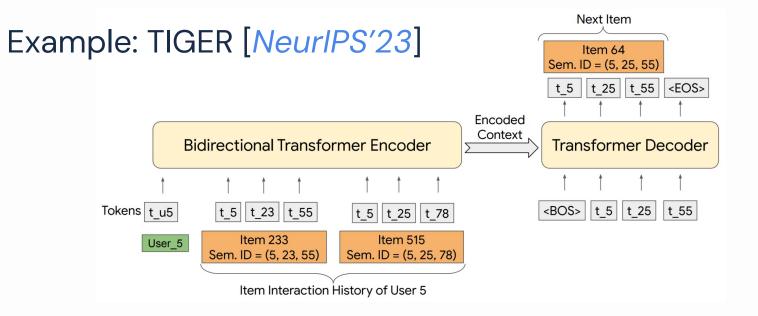
(also called: SemID or SID)

A few tokens that jointly index one item.

t3, t321, t643, t1011

Can index maximally 256⁴≈4.3×10⁹ items with 1024 tokens (4 tokens per item, each from a vocabulary of 256)

Generative Models based on Semantic IDs



Generative Models based on Semantic IDs

Example: TIGER [*NeurIPS'23*]

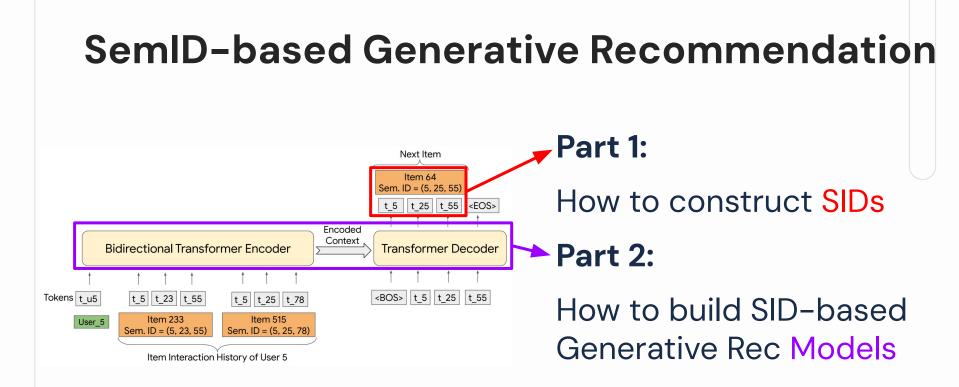
	100 C					
t_u5	t_5	t_23	t_55	t_5	t_25	t_78

Recommendation as a seq-to-seq generation problem

Generative Models based on Semantic IDs

Recommendation as a seq-to-seq generation problem

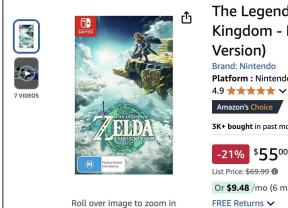
Input: user interacted items { $c_{11'} c_{12'} c_{13'} c_{14'} c_{21'} c_{22'}$...} Output: next item { $c_{11'} c_{12'} c_{13'} c_{14'}$



Part 1: Semantic ID Construction

Semantic ID Construction

Input: all data associated with the item (description, title, interactions, features, ...)



Output: mapping between **items ⇔ Semantic IDs**

B097B2YWFX ⇔ {t3, t321, t643, t1011}₁₆₉

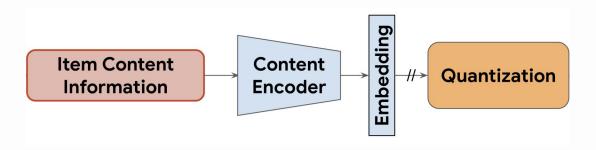
Part 1: Semantic ID Construction

(i) First example: TIGER and RQ-VAE-based SemIDs;

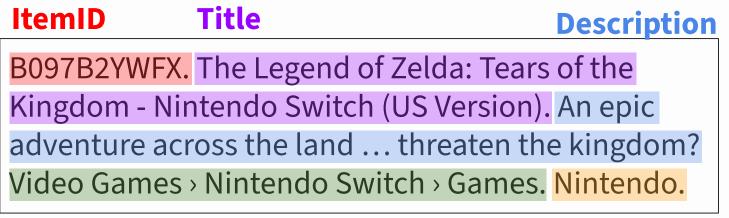
Input: concatenated text features



Output: mapping between **items ⇔ Semantic IDs**



1. Item Content Information (Text)



Categories

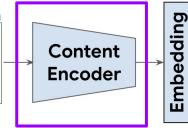
Brand

2. Content Encoder + Embedding (Text > Vector)

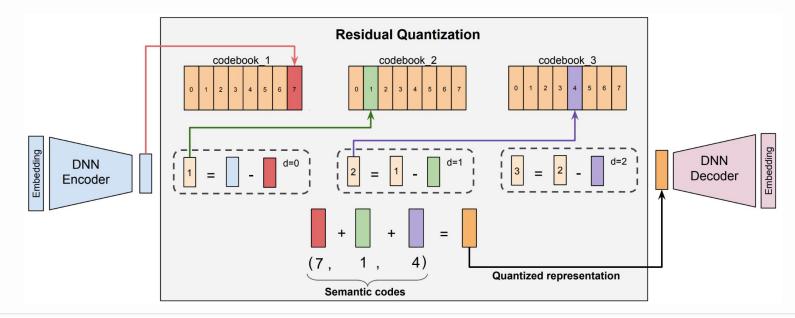
Pre-trained (fixed) sentence embedding model (SentenceT5)

ItemID Title Description B097B2YWFX. The Legend of Zelda: Tears of the Kingdom - Nintendo Switch (US Version). An epic adventure across the land ... threaten the kingdom? Video Games > Nintendo Switch > Games, Nintendo, Brand

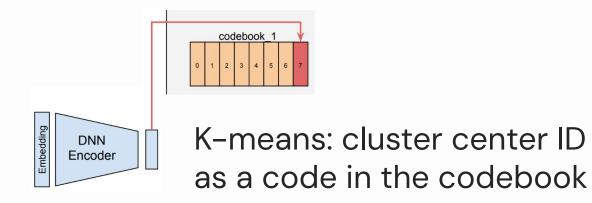
Categories



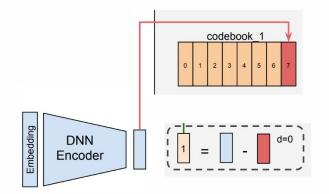
3. RQ-VAE Quantization (Vector ➤ IDs)



3. RQ-VAE Quantization (Vector ➤ IDs)

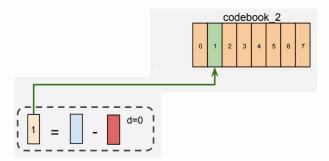


3. RQ-VAE Quantization (Vector ➤ IDs)



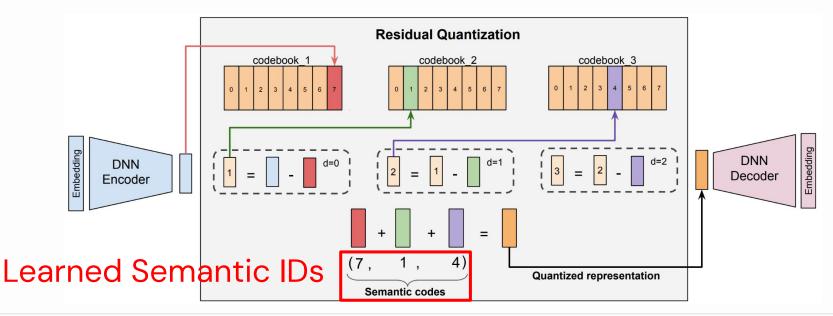
Residual of "input vector" and "clustering center vector"

3. RQ-VAE Quantization (Vector ➤ IDs)



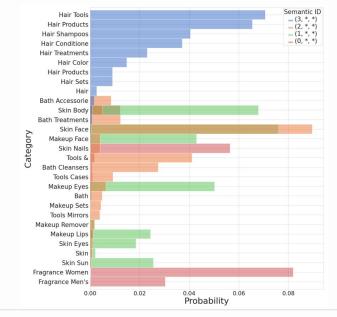
Residual as next level's input

3. RQ-VAE Quantization (Vector ➤ IDs)



Properties of RQ-VAE-based SemIDs

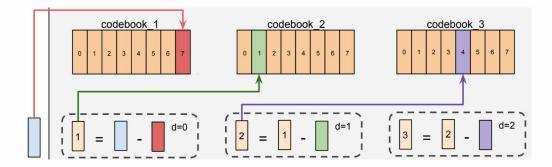
1. Semantic;



SemID Construction – First Example: TIGER

Properties of RQ-VAE-based SemIDs

- 1. Semantic;
- 2. Ordered / sequential dependent;

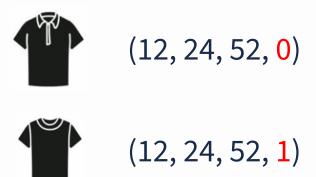


SemID Construction – First Example: TIGER

Collisions

SemID Construction – First Example: TIGER

Collisions

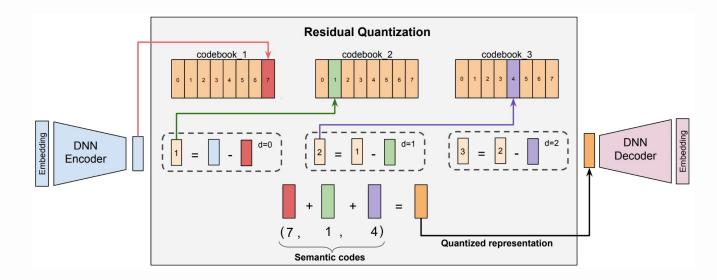


One extra token to avoid conflicts

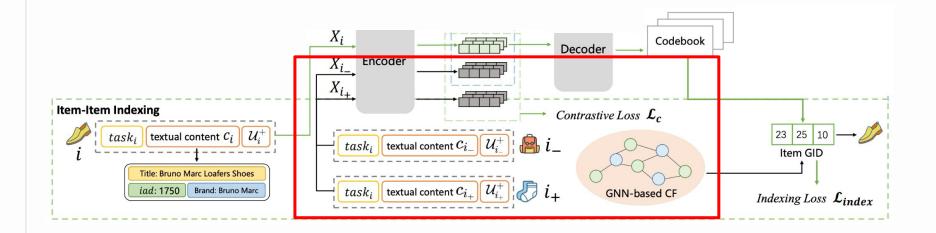
Part 1: Semantic ID Construction

(i) First example: TIGER and RQ-VAE-based SemIDs;(ii) Techniques to construct SemIDs;

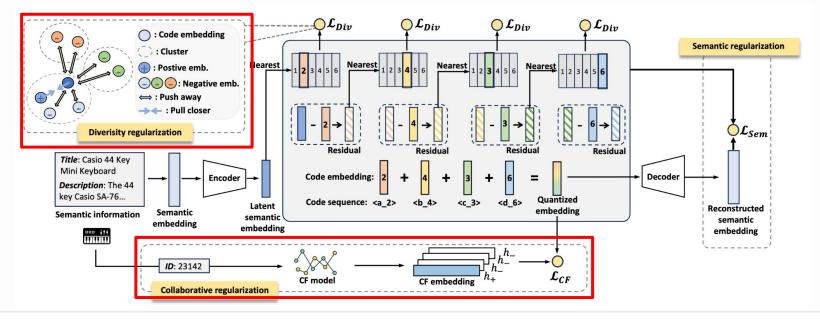
Residual Quantization



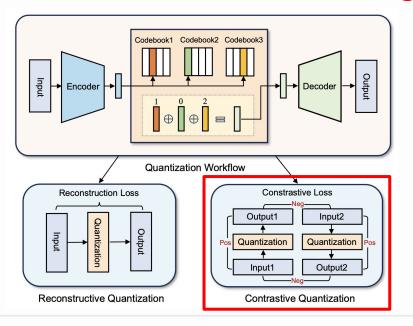
Residual Quantization + Item-level Regularization



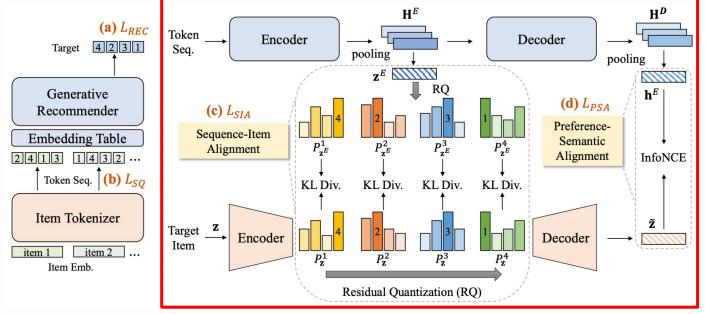
Residual Quantization + Item-level Regularization



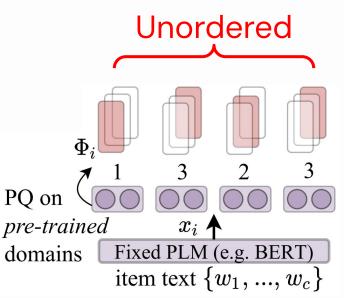
Residual Quantization + Item-level Regularization



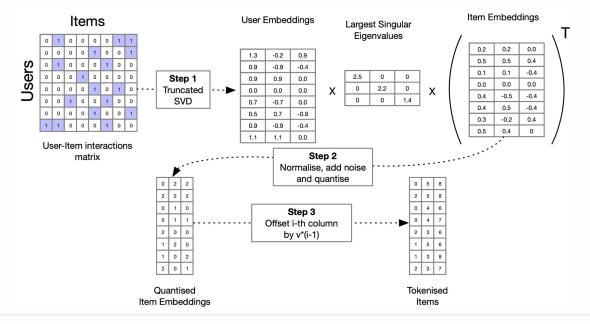
Residual Quantization + Recommendation Loss



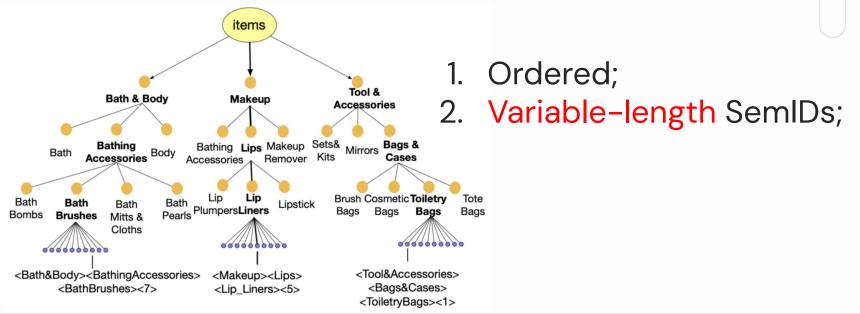
Product Quantization



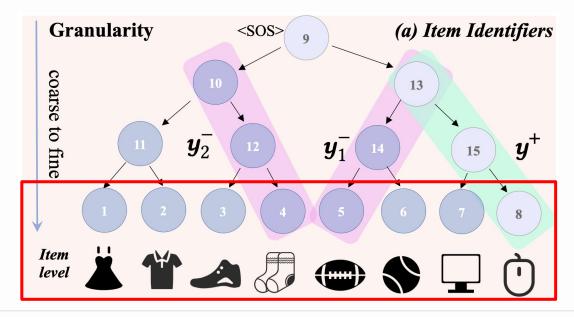
Product Quantization



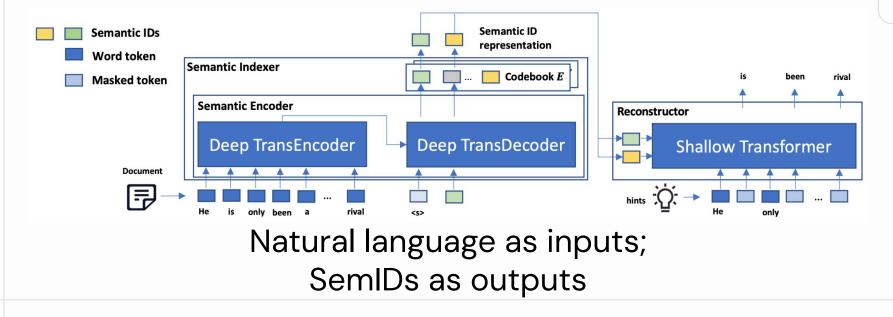
Hierarchical Clustering (Heuristics-based)



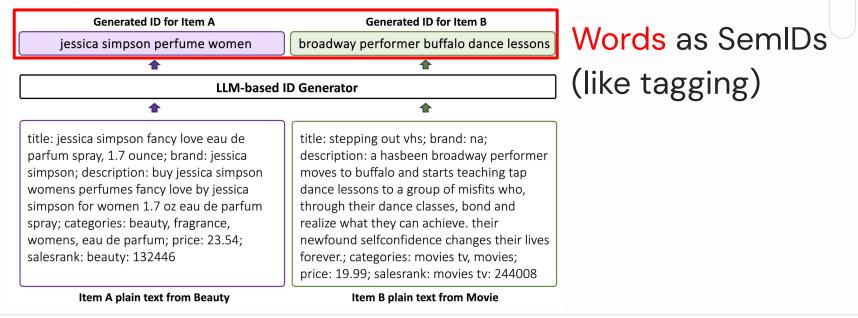
Hierarchical Clustering (Latent-based)



Language Model-based ID Generator



Language Model-based ID Generator

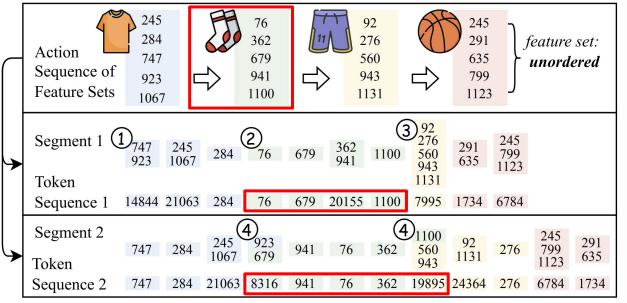


Context-independent

Action Tokenization	Example	Contextual	Unordered
Product Quantization	VQ-Rec (Hou et al., 2023)	×	✓
Hierarchical Clustering	P5-CID (Hua et al., 2023)	×	×
Residual Quantization	TIGER (Rajput et al., 2023)	×	×
Text Tokenization	LMIndexer (Jin et al., 2024)	×	×
Raw Features	HSTU (Zhai et al., 2024)	×	×
SentencePiece	SPM-SID (Singh et al., 2024)	×	×

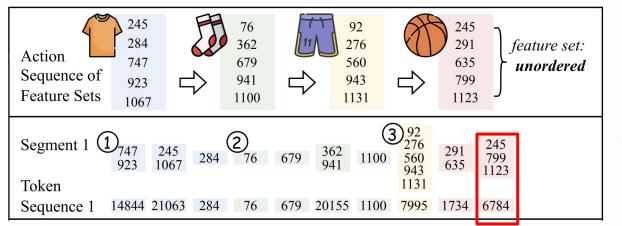
Same item \Rightarrow fixed semIDs in all sequences

Context-independent ⇒ Context-aware



Same item ⇒ different semIDs based on context

Context-independent ⇒ Context-aware



Core Idea:

Merge frequently co-occurring features as new tokens

(ActionPiece: "WordPiece" tokenization for generative rec)

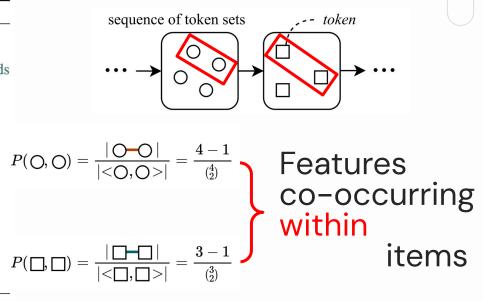
Context-independent ⇒ Context-aware

Algorithm 1 ActionPiece Vocabulary Construction

input Sequence corpus S', initial tokens V_0 , target size Q**output** Merge rules \mathcal{R} , constructed vocabulary \mathcal{V}

- 1: Initialize vocabulary $\mathcal{V} \leftarrow \mathcal{V}_0$ # each initial token corresponds to one unique item feature
- 2: $\mathcal{R} \leftarrow \emptyset$
- 3: while $|\mathcal{V}| < Q$ do
- 4: *# Count:* accumulate weighted token co-occurrences
- 5: $\operatorname{count}(\cdot, \cdot) \leftarrow \operatorname{Count}(\mathcal{S}', \mathcal{V}) \text{ # Algorithm 2}$
- 6: *# Update:* Merge a frequent token pair into a new token
- 7: Select $(c_u, c_v) \leftarrow \arg \max_{(c_i, c_j)} \operatorname{count}(c_i, c_j)$
- 8: $\mathcal{S}' \leftarrow \text{Update}(\mathcal{S}', \{(c_u, c_v) \rightarrow c_{\text{new}}\}) \text{ # Algorithm 3}$
- 9: $\mathcal{R} \leftarrow \mathcal{R} \cup \{(c_u, c_v) \rightarrow c_{\text{new}}\} \# \text{ new merge rule}$
- 10: $\mathcal{V} \leftarrow \mathcal{V} \cup \{c_{\text{new}}\} \#$ add new token to the vocabulary 11: end while

return \mathcal{R}, \mathcal{V}



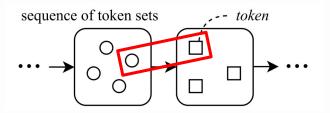
Context-independent ⇒ Context-aware

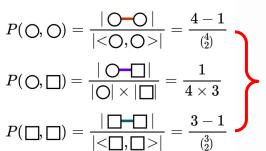
Algorithm 1 ActionPiece Vocabulary Construction

input Sequence corpus S', initial tokens V_0 , target size Q**output** Merge rules \mathcal{R} , constructed vocabulary \mathcal{V}

- 1: Initialize vocabulary $\mathcal{V} \leftarrow \mathcal{V}_0$ # each initial token corresponds to one unique item feature
- 2: $\mathcal{R} \leftarrow \emptyset$
- 3: while $|\mathcal{V}| < Q$ do
- 4: *# Count:* accumulate weighted token co-occurrences
- 5: $\operatorname{count}(\cdot, \cdot) \leftarrow \operatorname{Count}(\mathcal{S}', \mathcal{V}) \text{ # Algorithm 2}$
- 6: *# Update:* Merge a frequent token pair into a new token
- 7: Select $(c_u, c_v) \leftarrow \arg \max_{(c_i, c_j)} \operatorname{count}(c_i, c_j)$
- 8: $S' \leftarrow \text{Update}(S', \{(c_u, c_v) \rightarrow c_{\text{new}}\}) \text{ # Algorithm 3}$
- 9: $\mathcal{R} \leftarrow \mathcal{R} \cup \{(c_u, c_v) \rightarrow c_{\text{new}}\} \# \text{ new merge rule}$
- 10: $\mathcal{V} \leftarrow \mathcal{V} \cup \{c_{\text{new}}\} \#$ add new token to the vocabulary 11: end while

return \mathcal{R}, \mathcal{V}





Features co-occurring within or across items

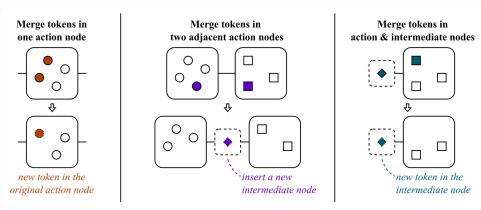
Context-independent ⇒ Context-aware

Algorithm 1 ActionPiece Vocabulary Construction

input Sequence corpus S', initial tokens \mathcal{V}_0 , target size Q**output** Merge rules \mathcal{R} , constructed vocabulary \mathcal{V}

- 1: Initialize vocabulary $\mathcal{V} \leftarrow \mathcal{V}_0$ # each initial token corresponds to one unique item feature
- 2: $\mathcal{R} \leftarrow \emptyset$
- 3: while $|\mathcal{V}| < Q$ do
- 4: # Count: accumulate weighted token co-occurrences
- 5: $\operatorname{count}(\cdot, \cdot) \leftarrow \operatorname{Count}(\mathcal{S}', \mathcal{V}) \text{ # Algorithm 2}$
- 6: *# Update:* Merge a frequent token pair into a new token
- 7: Select $(c_u, c_v) \leftarrow \arg \max_{(c_i, c_j)} \operatorname{count}(c_i, c_j)$
- 8: $S' \leftarrow \text{Update}(S', \{(c_u, c_v) \rightarrow c_{\text{new}}\}) \text{ # Algorithm 3}$
- 9: $\mathcal{R} \leftarrow \mathcal{R} \cup \{(c_u, c_v) \rightarrow c_{\text{new}}\} \# \text{ new merge rule}$
- 10: $\mathcal{V} \leftarrow \mathcal{V} \cup \{c_{\text{new}}\} \#$ add new token to the vocabulary
- 11: **end while**

return \mathcal{R}, \mathcal{V}



Summary of Techniques to Construct SemIDs

Context-independent

- Residual Quantization (+ regularization)
- Product Quantization
- Hierarchical Clustering
- LM-based ID Generator

Summary of Techniques to Construct SemIDs

Context-independent

- Residual Quantization (+ regularization)
- Product Quantization
- Hierarchical Clustering
- LM-based ID Generator

Context-aware

Part 1: Semantic ID Construction

(i) First example: TIGER and RQ-VAE-based SemIDs;
(ii) Techniques to construct SemIDs;
(iii) Inputs for SemID construction;

Input: all data associated with the item

Input: all data associated with the item

What exactly does "all data" mean? 🤷

Text or Multimodal Features

Text/Visual/Acoustic > Vector > IDs Pretrained Encoder Quantization

ItemIDTitleDescriptionB097B2YWFX.The Legend of Zelda: Tears of theKingdom - Nintendo Switch (US Version).An epicadventure across the land ... threaten the kingdom?Video Games > Nintendo Switch > Games.Nintendo.

Text

Categories

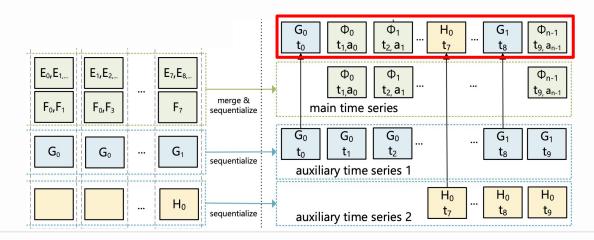
Brand

Multimodal

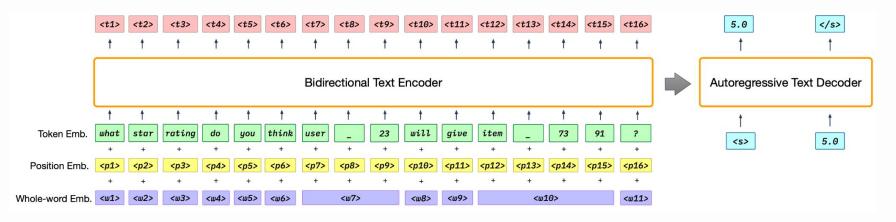
Deng et al. OneRec: Unifying Retrieve and Rank with Generative Recommender and Preference Alignment. arXiv:2502.18965. Liu et al. MMGRec: Multimodal Generative Recommendation with Transformer Model. arXiv:2404.16555. 207

Categorical Features

Categorical Features > IDs Merge & Sequentialize



No Features



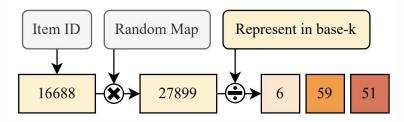
No Features

Item ID > IDs Text Tokenizer

	<t1></t1>	<t2></t2>	<t3></t3>	<t4></t4>	<t5></t5>	<t6></t6>	<t7></t7>	<t8></t8>	<t9></t9>	<t10></t10>	<t11></t11>	<t12></t12>	<t13></t13>	<t14></t14>	<t15></t15>	<t16></t16>	5.0	
	Ť	†	t	1	Ť	Ť	Ť	t	†	Ť	t	†	Ť	t	Ť	Ť	Ť	1
	Bidirectional Text Encoder												Autoregressive Text Decoder					
	Ť	† .	†	Ť	†	Ť	1	†	† I	†	† .	1	1	t	† I	Ť	†	t
Token Emb.	what	star	rating	do	you	think	user	_	23	will	give	item	_	73	91	?		5.0
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<s></s>	5.0
Position Emb.	<p1></p1>	<p2></p2>	<p3></p3>	<p4></p4>	<p5></p5>	<p6></p6>	<p7></p7>	<p8></p8>	<p9></p9>	<p10></p10>	<p11></p11>	<p12></p12>	<p13></p13>	<p14></p14>	<p15></p15>	<p16></p16>		
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Whole-word Emb.	<w1></w1>	<w2></w2>	<w3></w3>	<w4></w4>	<w5></w5>	<w6></w6>		<w7></w7>		<w8></w8>	<w9></w9>		<w2< td=""><td>10></td><td></td><td><w11></w11></td><td></td><td></td></w2<>	10>		<w11></w11>		

No Features

Random IDs



Input: all data associated with the item

(1) Item Metadata

Text / Multimodal / Categorical / No Features

Input: all data associated with the item

(1) Item Metadata

Text / Multimodal / Categorical / No Features

(2) Item Metadata + Behaviors

Input: all data associated with the item

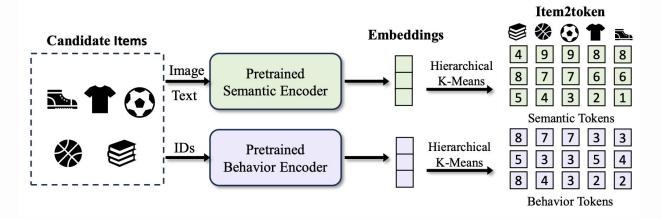
(1) Item Metadata

Text / Multimodal / Categorical / No Features

(2) Item Metadata + Behaviors But how?

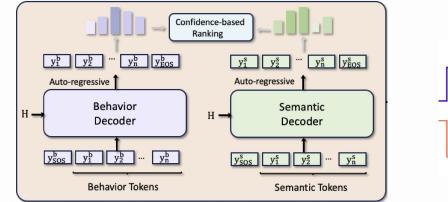
Item Metadata + Behaviors

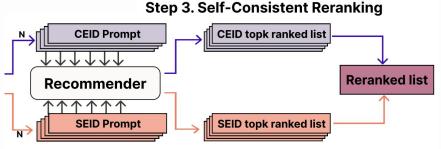
Fused Semantic IDs



Item Metadata + Behaviors

Fused Semantic IDs + Two-stream Generation



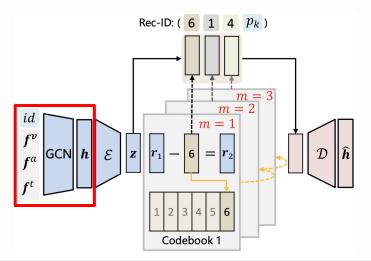


Wang et al. EAGER: Two-Stream Generative Recommender with Behavior-Semantic Collaboration. KDD 2024. Kim et al. SC-Rec: Enhancing Generative Retrieval with Self-Consistent Reranking for Sequential Recommendation. arXiv:2408:08686. 216

Item Metadata + Behaviors

Fused Representations

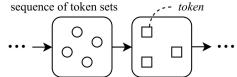
User-Item Graph + Semantic Features

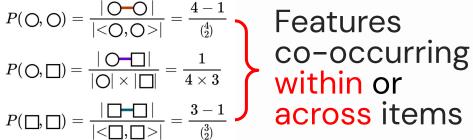


Item Metadata + Behaviors

Train Tokenizer on Behavior Sequence Corpus

Algorithm 1 ActionPiece Vocabulary Construction **input** Sequence corpus \mathcal{S}' , initial tokens \mathcal{V}_0 , target size Q**output** Merge rules \mathcal{R} , constructed vocabulary \mathcal{V} 1: Initialize vocabulary $\mathcal{V} \leftarrow \mathcal{V}_0$ # each initial token corresponds to one unique item feature 2: $\mathcal{R} \leftarrow \emptyset$ 3: while $|\mathcal{V}| < Q$ do # Count: accumulate weighted token co-occurrences 4: 5: $\operatorname{count}(\cdot, \cdot) \leftarrow \operatorname{Count}(\mathcal{S}', \mathcal{V}) # \operatorname{Algorithm} 2$ 6: # Update: Merge a frequent token pair into a new token Select $(c_u, c_v) \leftarrow \arg \max_{(c_i, c_i)} \operatorname{count}(c_i, c_j)$ 7: 8: $\mathcal{S}' \leftarrow \text{Update}(\mathcal{S}', \{(c_u, c_v) \rightarrow c_{\text{new}}\}) \text{ # Algorithm 3}$ $\mathcal{R} \leftarrow \mathcal{R} \cup \{(c_u, c_v) \rightarrow c_{\text{new}}\} \# \text{ new merge rule}$ $\mathcal{V} \leftarrow \mathcal{V} \cup \{c_{\text{new}}\} \#$ add new token to the vocabulary 11: end while return \mathcal{R}, \mathcal{V}

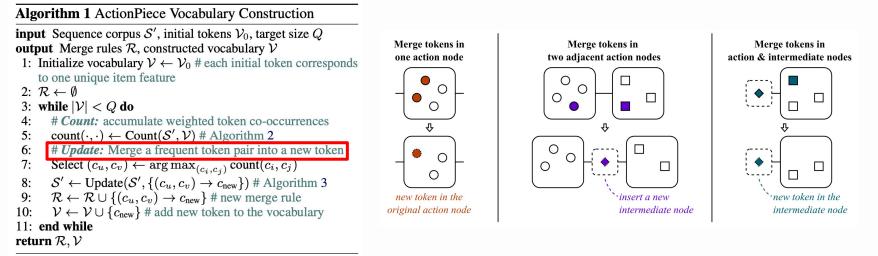




Features across items

Item Metadata + Behaviors

Train Tokenizer on Behavior Sequence Corpus



it 97

it 8

Item Metadata + Behaviors

Multi-Behavior Recommendation

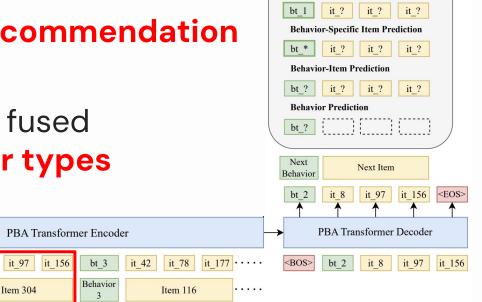
Semantic IDs fused with **behavior types**

bt 1

Behavior

ut u

User u



Unified Multi-Task Framework

Target Behavior Item Prediction

Item Metadata + Behaviors Multi-Behavior Recommendation

Next Token Prediction as natural **multi-task learning**

(prompted by behavior type)

it 8

ut u

User u

bt 1

Behavior

it 97

Item 304

PBA Transformer Encoder

bt 3

Behavior

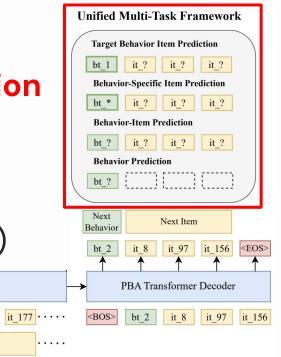
3

it 42

it 78

Item 116

it 156



Input: all data associated with the item

(1) Item Metadata

Text / Multimodal / Categorical / No Features

(2) Item Metadata + Behaviors

Fused semantic IDs & Representations

Tokenizer trained on behavior sequences

Part 1 Summary - SemID Construction

(1) First Example: TIGER

(2) Construction Techniques

(3) Inputs

Part 1 Summary – SemID Construction

(1) First Example: TIGER

(2) Construction Techniques

Context-independent (PQ, RQ, Clustering, LM-based generator) -> Context-aware (3) Inputs

Part 1 Summary – SemID Construction

(1) First Example: TIGER

(2) Construction Techniques

Context-independent (PQ, RQ, Clustering, LM-based generator) -> Context-aware

(3) Inputs

Item Metadata (Text, Multimodal, Features)

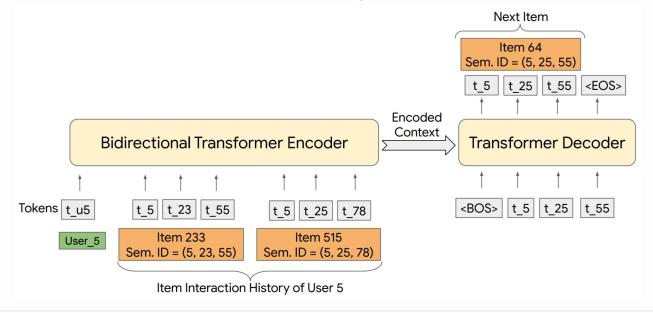
+ Behaviors (Fused SemIDs / Representations)

Part 2: SemID-based Generative Recommendation Model Architecture

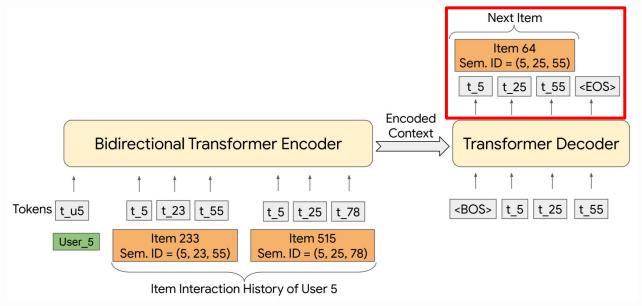
Recommendation as a seq-to-seq generation problem

Input: user interacted items { c_{11} , c_{12} , c_{13} , c_{14} , c_{21} , c_{22} , ...} ...} Output: next item { c_{11} , c_{12} , c_{13} , c_{14} , c_{21} , c_{22} , ...}

Architecture: Decoder-Only / Encoder-Decoder



Objective: Next-Token Prediction



Objective: Next-Token Prediction

Could we add negative samples like BPR loss?

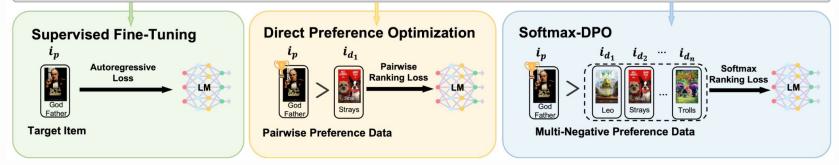
Objective: Preference Alignment Objective

One negative sample per instance

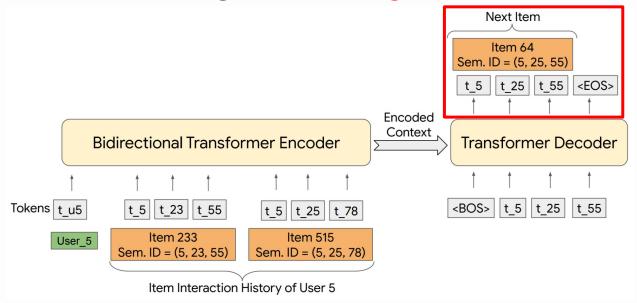


Objective: Preference Alignment Objective Multiple negative samples per instance

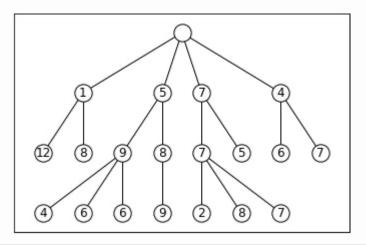
X: "After watching [History Sequence], which movie do you think the person will choose next from [Item List]?"

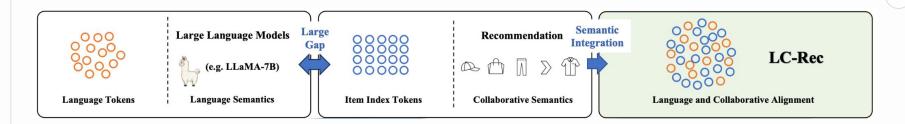


Inference: How to get a ranking list?

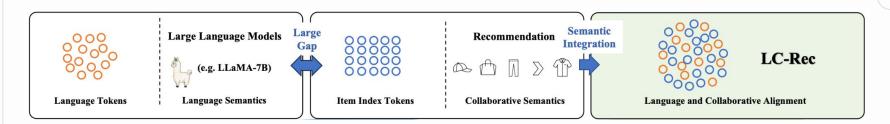


Inference: How to get a ranking list? (Constrained) Beam Search



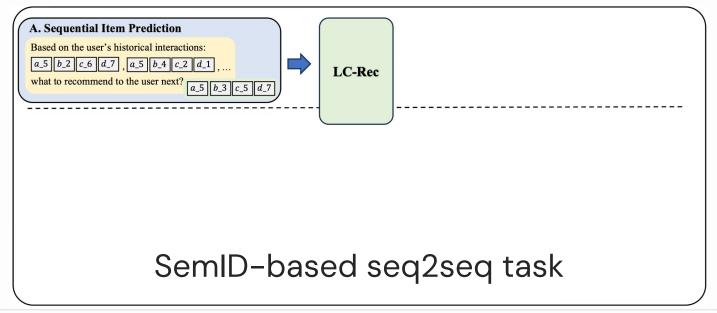


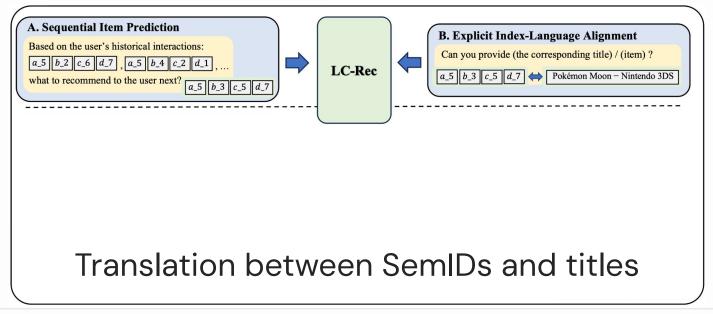
Align with LLMS - LC-Rec

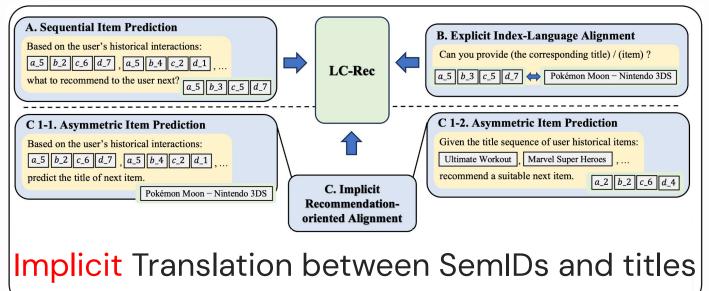


Core Idea:

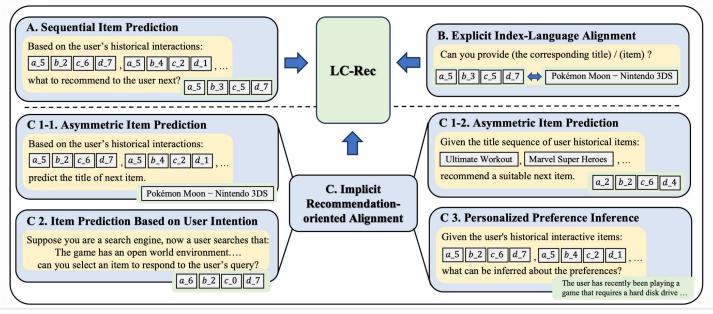
Construct instructions containing both Semantic IDs and language tokens







A. Sequential Item Prediction Based on the user's historical interactions: $a_{-5}b_{-2}c_{-6}d_{-7}$, $a_{-5}b_{-4}c_{-2}d_{-1}$, what to recommend to the user next? $a_{-5}b_{-3}c_{-5}d_{-7}$	LC-Rec	B. Explicit Index-Language Alignment Can you provide (the corresponding title) / (item) ? a_5 b_3 c_5 d_7 Pokémon Moon – Nintendo 3DS
C 1-1. Asymmetric Item Prediction Based on the user's historical interactions: $a_{.5}b_{.2}c_{.6}d_{.7}$, $a_{.5}b_{.4}c_{.2}d_{.1}$, predict the title of next item. Pokémon Moon – Nintendo 3DS C 2. Item Prediction Based on User Intention Suppose you are a search engine, now a user searches that: The game has an open world environment can you select an item to respond to the user's query? $a_{.6}b_{.2}c_{.0}d_{.7}$	C. Implicit Recommendatio oriented Alignme	



Part 2 Summary – Architecture

(1) Train from Scratch

(2) Align with LLMs

Part 2 Summary – Architecture

(1) Train from Scratch

Objective (NTP, DPO, S-DPO)

Inference (Beam Search)

(2) Align with LLMs

Part 2 Summary – Architecture

(1) Train from Scratch

Objective (NTP, DPO, S-DPO)

Inference (Beam Search)

(2) Align with LLMs

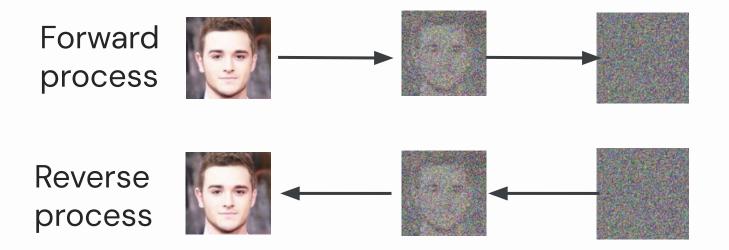
LC-Rec: Instructions containing both semIDs and language tokens

04	

Diffusion Model

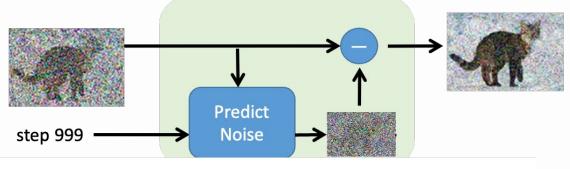
-based Generative Recommendation

What is Diffusion



Build the mapping between data sample and Gaussian sample

What is Diffusion



Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Remove the noise step by step from a Gaussian sample.

Diffusion in CV Diffusion is at the core of visual content generation.

Image generation

Stable Diffusion, DALL-E...

Video generation

Sora, Hunyuan-Video, Keling...

Diffusion for recommendation

Use diffusion to enhance traditional recommender

- More robust representation
- Data augmentation

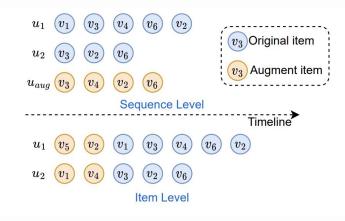
Diffusion as recommender

- Diffuse on the user interaction vector
- Diffuse on item representation
- Discrete diffusion

Diffusion for personalized content generation

- Personalized try-on, image,....

Diffusion as enhancer



Generate more interaction or sequences

Output Transformer z_1 z_2 Distribution Representation z_n z_n xInput dUser's Historical Interaction Sequence S Approximator $f_{\theta}(x, d, S)$

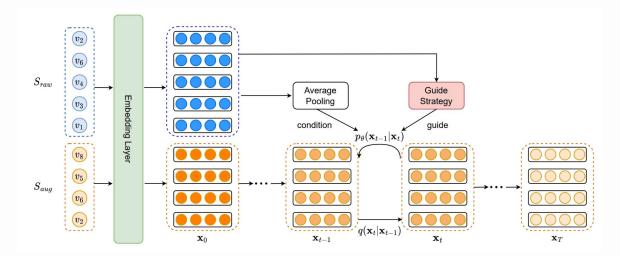
 \hat{x}_0

Enhance the robustness of embeddings

 h_1

Pseudo sequence generation (I)

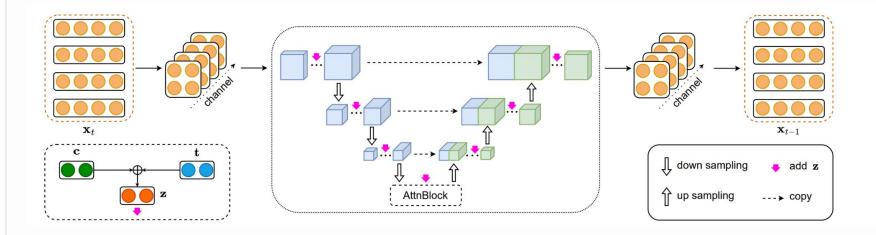
Generate pseudo sequence embeddings conditioned on historical interaction sequence



Diffusion Augmentation for Sequential Recommendation, in CIKM 2023.

Pseudo sequence generation (II)

The model architecture is adopted from U-Net



Diffusion for recommendation

Use diffusion to enhance traditional recommender

- More robust representation
- Data augmentation

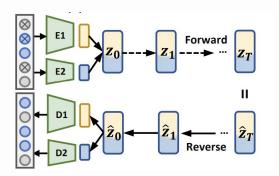
Diffusion as recommender

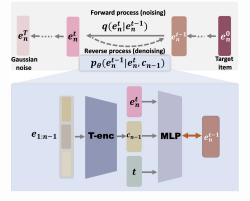
- Diffuse on the user interaction vector
- Diffuse on item representation
- Discrete diffusion

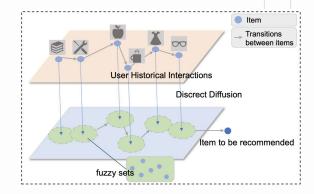
Diffusion for personalized content generation

- Personalized try-on, image,....

Diffusion as recommender







Diffuse on the user interaction vector

Diffuse on item representation

Discrete diffusion

Diffusion Recommender Model, in SIGIR 2023.

254

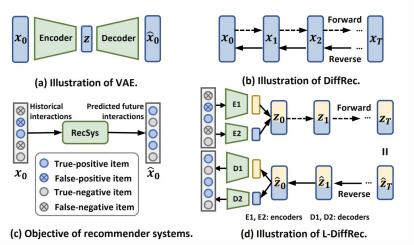
Generate What You Prefer: Reshaping Sequential Recommendation via Guided Diffusion, in NeurIPS 2023

Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model, in NeurIPS 2024

Interaction vector completion (I)

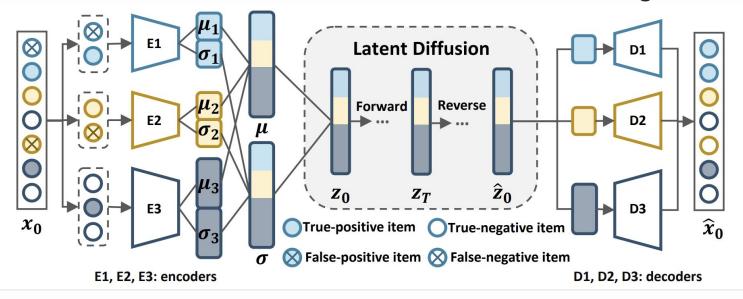
Motivation - limitation of GANs and VAEs:

GAN- and VAE-based recommenders suffers from issues like **instability and representation collapse**.

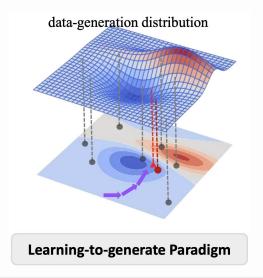


Interaction vector completion (II)

Forward: **corrupt the interaction vector** into gaussian noise Reverse: **recover the interaction vector** from the gaussian



There exists an implicit distribution, from which target item embedding can be generated.



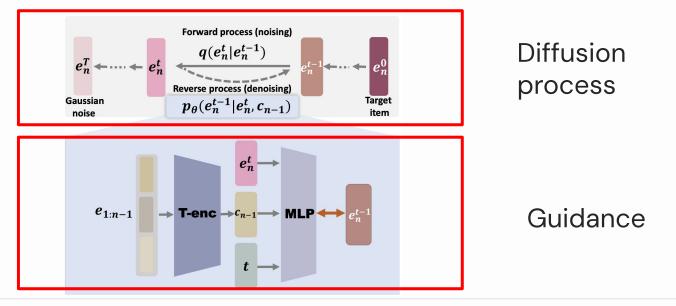
Challenge:

• The data-generation distribution is complicated and unknown.

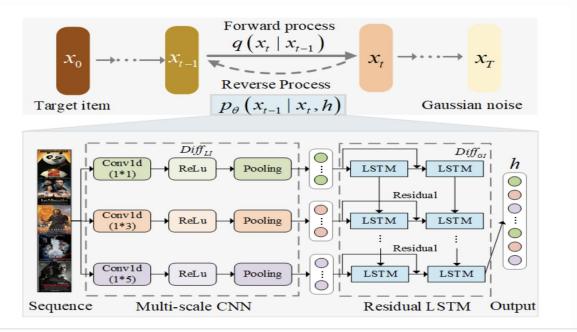
Solution:

- Capture the data-generation distribution by connecting it with Gaussian distribution.
- This can be achieved by diffusion.

- Diffusion on target item embeddings.
- Guided by user interaction sequence for personalization.

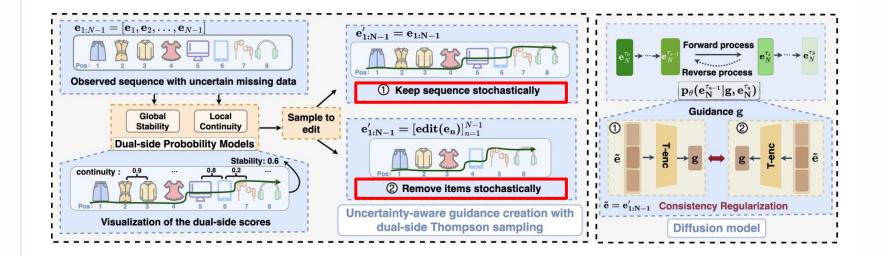


• Different sequence encoder



Diffusion Recommendation with Implicit Sequence Influence, in WWW 2024

• Uncertainty-aware guidance



• Incorporate preference optimization

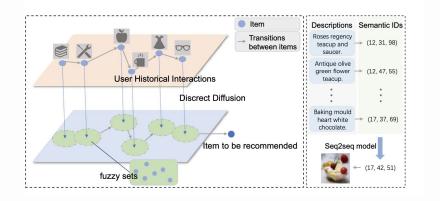
$$\mathcal{L}_{\text{Simple}} = \mathbb{E}_{(\mathbf{e}_0^+, \mathbf{c}, t)} \left[\left\| \mathcal{F}_{\theta}(\mathbf{e}_t^+, t, \mathcal{M}(\mathbf{c})) - \mathbf{e}_0^+ \right\|_2^2 \right],$$

$$\mathcal{L}_{ ext{BPR-Diff-C}} = -\log \sigma(-|\mathcal{H}| \cdot [S(\hat{\mathbf{e}}_0^+, \mathbf{e}_0^+) - S(\mathcal{F}_{ heta}(\bar{\mathbf{e}}_t^-, t, \mathcal{M}(\mathbf{c})), \bar{\mathbf{e}}_0^-)]) \,.$$

$$\mathcal{L}_{\text{PerferDiff}} = \underbrace{\lambda \mathcal{L}_{\text{Simple}}}_{\text{Learning Generation}} + \underbrace{(1-\lambda)\mathcal{L}_{\text{BPR-Diff-C}}}_{\text{Learning Preference}} .$$

Discrete diffusion

State transitions occur under discrete conditions for the entire interaction sequence.



- Represent interaction sequence as one-hot vector through semantic ID.
- Conduct discrete diffusion on interaction sequence.

Discrete diffusion

Algorithm 1 Training of DDSR.

Input: historical interaction sequence $v_{1:n-1} = c_{1:n-1;1:m}$; target i em $v_n = c_{n;1:m}$; transition matrix Q_t ; Approximator $f_{\theta}(\cdot)$.

Output: well-trained Approximator $f_{\theta}(\cdot)$. While not converged do:

1: Sample Diffusion Time:
$$t \sim [0, 1, \dots, T]$$
;

2: Calculate *t*-step transition probability:
$$\overline{Q_t} = Q_1 Q_2 \cdots Q_t$$
; $[Q_t]_{ij} = \begin{cases} (1 - \beta_t)/(|\nu| - 1) & \text{if } i \neq j \\ \beta_t & \text{if } i = j \end{cases}$

3: Convert
$$c_{n;1:m}$$
 to one-hot encoding $\boldsymbol{x}_{n;1:m}^{o}$;

4: Obtain the discrete state $x_{n;1:m}^t$ after t steps by Equation 2, thereby obtaining the 'fuzzy set'

$$c_{1:n-1;1:m}^{t};$$

5: Modeling $c_{2;n;1:m}$ based on 'fuzzy sets' through Equation 5; 6: Take gradient descent step on ∇L_{CE} ($\hat{c}_{2:n;1:m}, c_{2:n;1:m}$).

$$\hat{c}_{2:n;1:m} = f_{\theta}(c_{1:n-1;1:m}^t, t)$$

 $\rho \setminus I(|\mathbf{y}|)$

Forward process

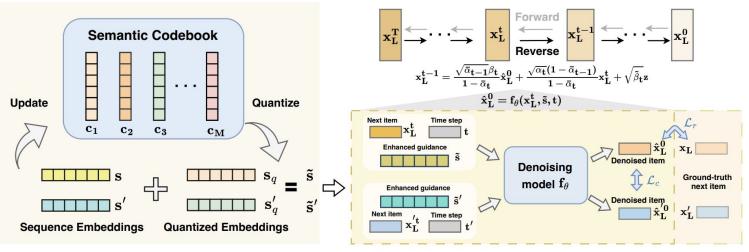
1) ::: / :

Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model, in NeurIPS 2024.

Semantic IDs

Discrete diffusion

• Quantization embedding with continuous diffusion.



Semantic Vector Quantization

Contrastive Discrepancy Maximization

Diffusion for recommendation

Use diffusion to enhance traditional recommender

- More robust representation
- Data augmentation

Diffusion as recommender

- Diffuse on the user interaction vector
- Diffuse on item representation
- Discrete diffusion

Diffusion for personalized content generation

- Personalized try-on, image,....

Personalized content generation



Personalized try-on

A photo of \hat{V} woman shaking hands with A photo of \hat{V} woman \hat{V} woman witcher at Joe Biden piloting a fight jet

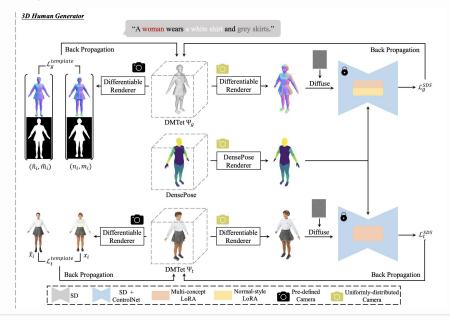
A photo of mysterious night



Personalized image

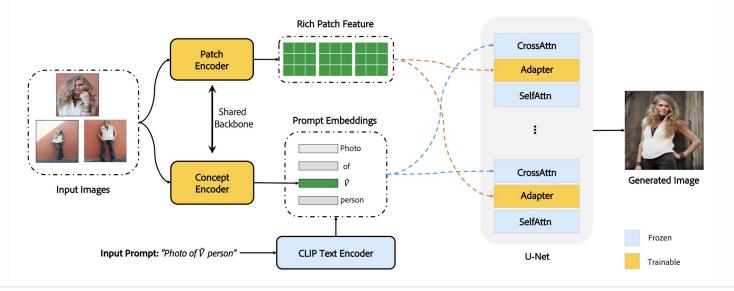
Personalized Try-on

Generate realistic 3D try-on given person images, clothes images, and a text prompt.

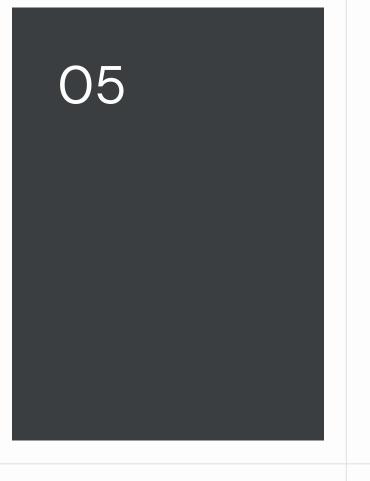


Personalized Image

Generate personalized image given person images and the desired concept.



InstantBooth: Personalized Text-to-Image Generation without Test-Time Finetuning. CVPR 2024



Open Challenges and Beyond

Scaling Law:

larger model + larger dataset ->
 better performance

Most large models are generative

• (LLMs, Text2Video Models)

Background

Scaling Law

Scaling Law:

larger model + larger dataset ->
 better performance

Most large models are generative

- (LLMs, Text2Video Models)
 - Large generative rec models?

Scaling Law

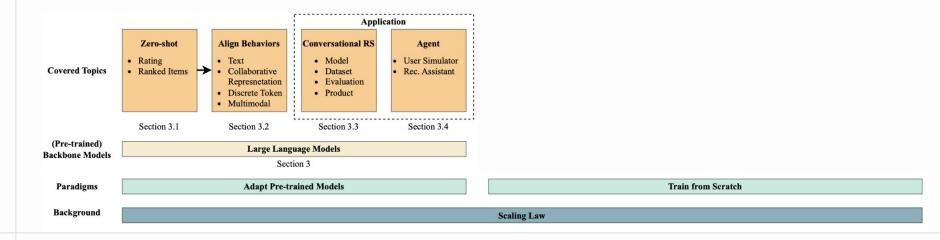
How to get a large generative rec model?

- Pre-trained model (e.g., LLMs) -> Adaptation;
- From scratch;

Paradigms	Adapt Pre-trained Models	Train from Scratch			
Background					
8		Scaling Law			

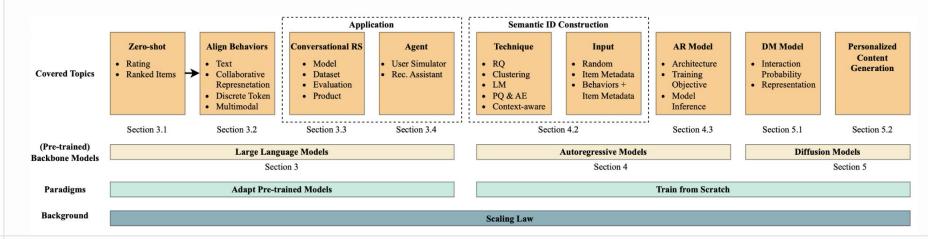
Adaptation

Mainly LLM-based recommendations

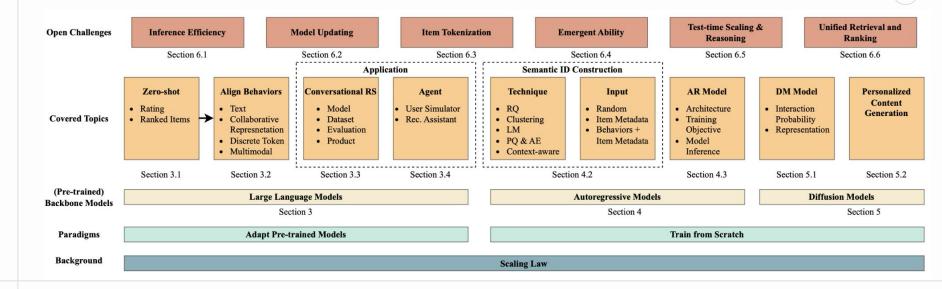


From Scratch

Autoregressive models (e.g., semantic ID-based);
Diffusion models;



Open Challenges



Open Challenges

Part 1: What becomes harder?

Comparing to traditional RecSys, what challenges may large generative models face?

Open Challenges

Part 1: What becomes harder?

Comparing to traditional RecSys, what challenges may large generative models face?

Part 2: What becomes possible?

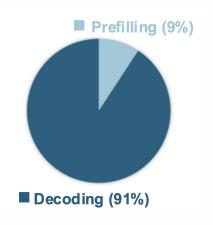
What new opportunities may large generative models unlock for recommender systems?

Open Challenges	Inference Efficiency	Model Updating	Item Tokenization	Emergent Ability	Test-time Scaling & Reasoning	Unified Retrieval and Ranking
	Section 6.1	Section 6.2	Section 6.3	Section 6.4	Section 6.5	Section 6.6

Part 1: What Becomes Harder?

Comparing to traditional RecSys, what challenges may large generative models face?

Retrieval Models: K Nearest Neighbor Search Generative Models (e.g., AR models): Beam Search



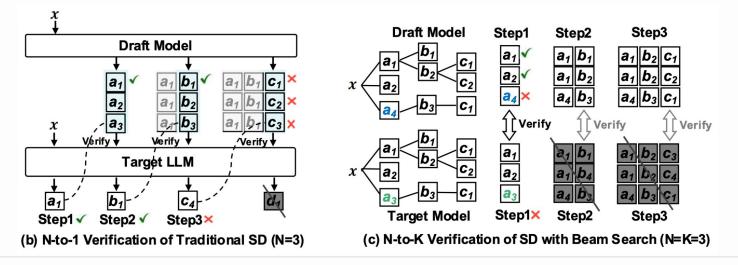
How to accelerate LLMs? Speculative Decoding

- Use a "cheap" model to generate candidates
- "Expensive" model can accept or reject (and perform inference if necessary)

[START] japan ¦ s benchmark bond n
[START] japan ¦ s benchmark nikkei 22 75
[START] japan ¦ s benchmark nikkei 225 index rose 22 76
[START] japan ¦ s benchmark nikkei 225 index rose 226 ; 69 7 points
[START] japan ¦ s benchmark nikkei 225 index rose 226 ; 69 points ; or 9 1
[START] japan ¦ s benchmark nikkei 225 index rose 226 ; 69 points ; or 1 ; 5 percent ; to 10 ; 9859
[START] japan ' s benchmark nikkei 225 index rose 226 ; 69 points ; or 1 ; 5 percent ; to 10 ; 989 ; 79 ; in
[START] japan ¦ s benchmark nikkei 225 index rose 226 ; 69 points ; or 1 ; 5 percent ; to 10 ; 989 ; 79 in <mark>tokyo</mark> late
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 989 . 79 in late morning trading . [END]

Speculative decoding for generative rec? 🗙

N-to-K verification

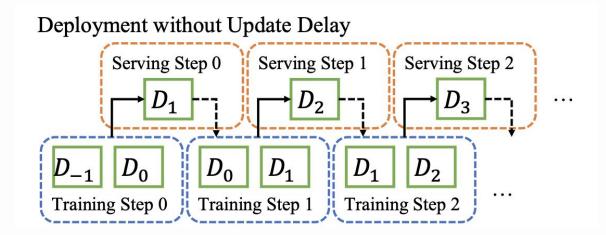


In addition to single-model acceleration methods, what about "serving throughout"?

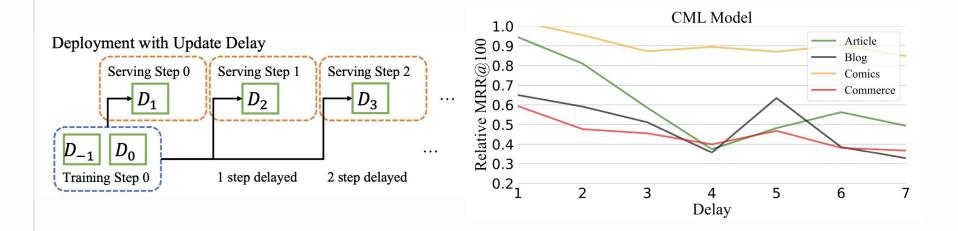
Example: **VLLM** offers solutions for high-throughput and memory-efficient inference and serving

What's unique for generative rec?

Recommendation models favor timely updates

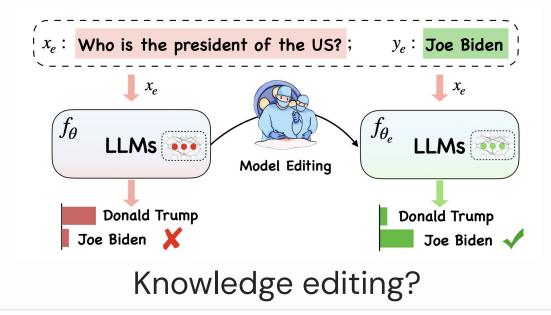


Delayed updates lead to performance degradation



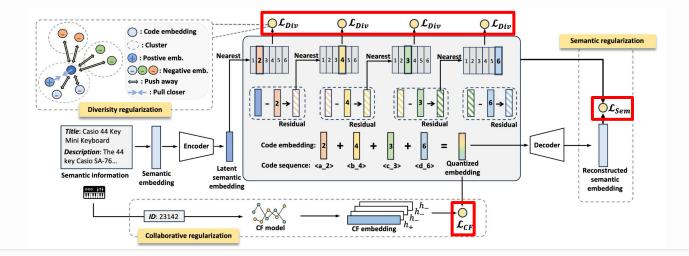
How to update large generative rec models timely? (Frequently retraining large generative models may be resource consuming)

How to update large generative rec models timely?



Item Tokenization

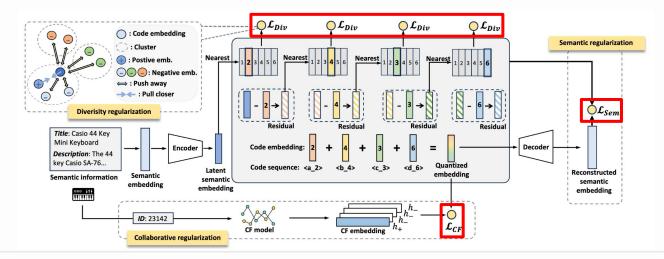
Multiple objectives for optimizing item tokenization ...



Item Tokenization

Multiple objectives for optimizing item tokenization ...

But none of them is directly related to rec performance



reconstruction loss ≠ downstream performance

How to connect tokenization objective with recommendation performance?

Zipf's distribution? Entropy? Linguistic metrics?

- Language Tokenization
 - 2014~2015: Word / Char

Context-independent ⇒ Context-aware

Language Tokenization

2014~2015: Word / Char

2016~present: BPE / WordPiece

Context-independent ⇒ Context-aware

Language Tokenization

2014~2015: 2016~present: Word / Char BPE / WordPiece

Context-independent ⇒ Context-aware

SemID Construction

2023~2024: RQ / PQ / Clustering / LM-based Generator

Language Tokenization

2014~2015: 2016~present: Word / Char BPE / WordPiece

Context-independent ⇒ Context-aware

SemID Construction

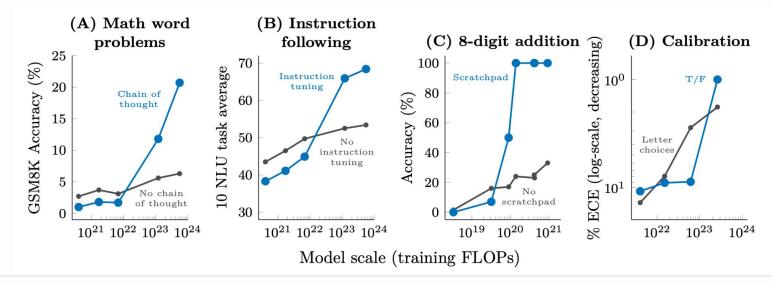
2023~2024: RQ / PQ / Clustering / LM-based Generator 2025: ActionPiece / ?

Part 2: What Becomes Possible?

What new opportunities may large generative models unlock for recommender systems?

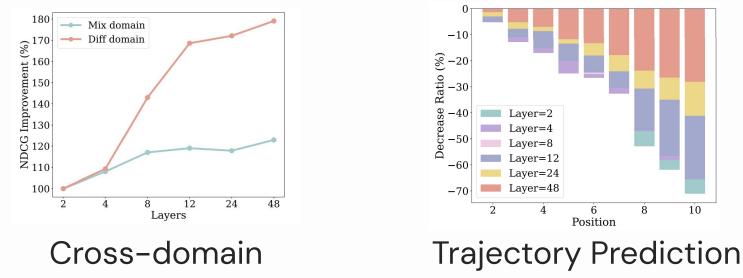
Emergent Ability

Abilities not present in smaller models but is present in larger models



Emergent Ability

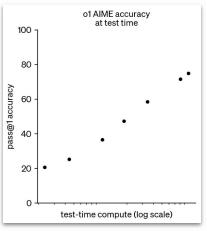
Do we have emergent abilities in large generative recommendation models?



10

Test-time Scaling

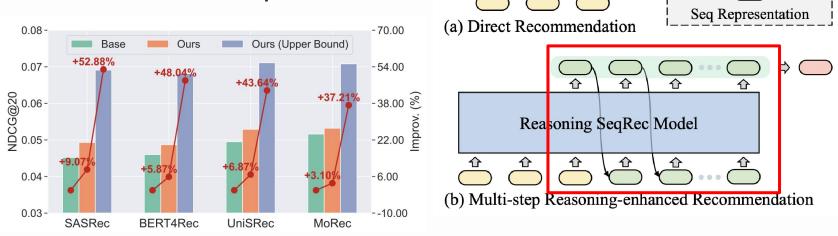
There have been explorations on model / data scaling of recommendation models



Test-time scaling is still under exploration

Test-time Scaling

Reasoning over latent hidden states to scale up test-time computation.



SeqRec Model

企

仚

仚

Item Embedding

Reasoning Hidden State

Large Diffusion Model

End-to-end personalized content generation with diffusion model.

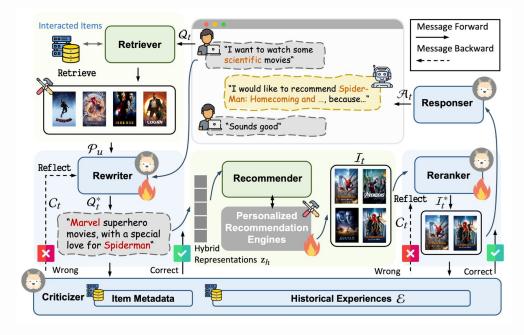
- Existing work largely uses **pretrained diffusion model** to generate personalized content.
- An **end-to-end training** could bring mere personalization.

Agentic

Next: personalization & agentic system

	r me.
 Q Completed 44s · 22 sources Thinking I'm checking if they fit the user's taste for adventure and 	hows es.
 Evaluating movie themes Which is inspiring and scientific. I think these choices will engage the user with their blend of science and drama. Let me ensure they're not just fiction but grounded in scie The Martian is known for realism, and 2001 incorporates r 	
 The Martian (2015) follows an astronaut using science to on Mars. It's problem-solving and engineering, much like Stark's character, and focuses on botany and space explo 	Tony ration.
v ² ≜≡ overcoming challenges.) and
	 Calibration Games 3 44s - 22 sources Thinking Thinking I'm checking if they fit the user's taste for adventure and innovation, like Iron Man. The Martian's survival story and 2 space exploration seem to match well. Hidden Figures tells a true story of NASA mathematicians, which is inspiring and scientific. It think these choices will engage the user with their blend of science and drama. Let me ensure they're not just fiction but grounded in scien The Martian (2015) follows an astronaut using science to s on Mars. It's problem-solving and engineering, much like T Stark's character, and focuses on botany and space explore NASA, focusing on math and aerospace engineering. Its inspiring story aligns with Iron Man's themes of intelligence

Agentic



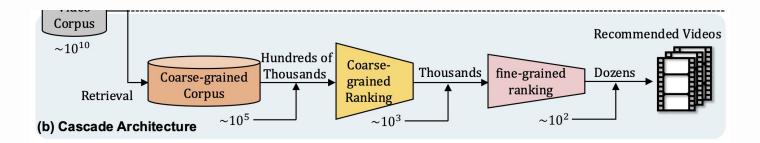
Large agentic system for precise user modeling and better recommendation

models Inference (Online) Filtering Scorin Ordering Retrieve top k Transform Embed inpu Filter invalid Add features to Score top k Features candidates business logic item or query candidates candidates candidates ANN Bloom Filter Feature Feature Tfms Ranking Ordering Index Store model Policy Build Approx NN index Train embedding Embed items Build Bloom vild feature Feature Train ranking Define Ordering from catalog Filters Transforms model store (item.user) model Policy Training dat fm Workflow Training data **Business** log Training (Offline) rules, strategies, heuristics

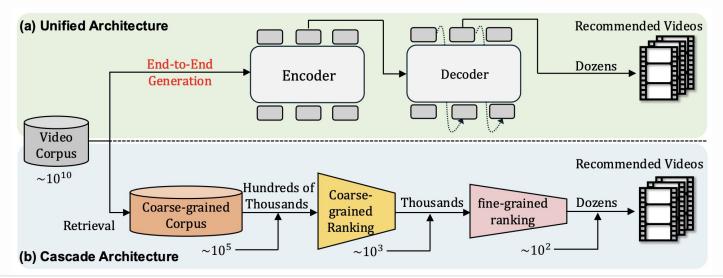
Complicated Architecture

- Difficult to be optimized in an end-to-end way
- Latency between / within different modules

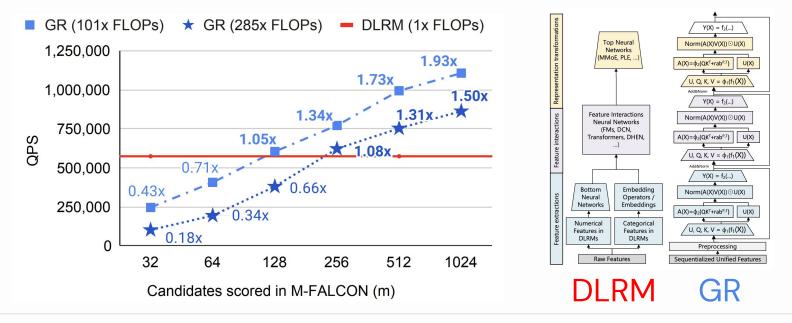
Is it possible to replace traditional cascade architecture



Is it possible to replace traditional cascade architecture with a **unified generative model**?



Better throughout when ranking more candidates



Q & A

Thank you for coming!

Please refer to

large-genrec.github.io

for slides, <u>paper list</u>,

- Papers
 - Surveys
 - <u>LLM-based Generative Recommendation</u>
 - <u>LLM as Sequential Recommender</u>
 - Early Efforts: Zero-shot Recommendation with LLMs
 - Aligning LLMs for Recommendation
 - Training Objectives & Inference
 - LLM as Conversational Recommender & Recommendation Assistant
 - LLM as User Simulator
 - Semantic ID-based Generative Recommendation
 - Semantic ID Construction
 - Quantization
 - Hierarchical Clustering
 - Contextual Action Tokenization
 - Behavior-aware Tokenization
 - Language Model-based Generator
 - Architecture
 - Dense & Generative Retrieval
 - Unified Retrieval and Ranking
 - Aligning with LLMs
 - Diffusion Model-based Generative Recommendation
 - Diffusion-enhanced Recommendation
 - Diffusion as Recommender
 - Personalized Content Generation with Diffusion
- Resources