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Action Tokenization
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Machine-readable Data 🤖

Human-readable Data 👨👩

Tokenize
Premium Men’s Short Sleeve Athletic Training T-Shirt Made of Lightweight Breathable Fabric, Ideal for 
Running, Gym Workouts, and Casual Sportswear in All Seasons; High-Performance Breathable Cotton Crew 
Socks for Men with Arch Support, Cushioned Heel and Toe, and Moisture Control, Perfect for Sports, 
Walking, and Everyday Comfort; Men’s Loose-Fit Basketball Shorts with Elastic Drawstring Waistband, 
Quick-Dry Mesh Fabric, and Printed Number 11 for Professional and Recreational Play; Official Size 7 
Composite Leather Basketball Designed for Indoor and Outdoor Use, Deep Channel Design for Enhanced 
Grip and Ball Control, Ideal for Training and Competitive Matches;

Text description of each action



Action Tokenization
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Machine-readable Data 🤖

Human-readable Data 👨👩

Tokenize
Premium Men’s Short Sleeve Athletic Training T-Shirt Made of Lightweight Breathable Fabric, Ideal for 
Running, Gym Workouts, and Casual Sportswear in All Seasons; High-Performance Breathable Cotton Crew 
Socks for Men with Arch Support, Cushioned Heel and Toe, and Moisture Control, Perfect for Sports, 
Walking, and Everyday Comfort; Men’s Loose-Fit Basketball Shorts with Elastic Drawstring Waistband, 
Quick-Dry Mesh Fabric, and Printed Number 11 for Professional and Recreational Play; Official Size 7 
Composite Leather Basketball Designed for Indoor and Outdoor Use, Deep Channel Design for Enhanced 
Grip and Ball Control, Ideal for Training and Competitive Matches;

Text description of each action

Cons: Inefficient;



Action Tokenization
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Machine-readable Data 🤖

Human-readable Data 👨👩

Tokenize
Premium Men’s Short Sleeve Athletic Training T-Shirt Made of Lightweight Breathable Fabric, Ideal for 
Running, Gym Workouts, and Casual Sportswear in All Seasons; High-Performance Breathable Cotton Crew 
Socks for Men with Arch Support, Cushioned Heel and Toe, and Moisture Control, Perfect for Sports, 
Walking, and Everyday Comfort; Men’s Loose-Fit Basketball Shorts with Elastic Drawstring Waistband, 
Quick-Dry Mesh Fabric, and Printed Number 11 for Professional and Recreational Play; Official Size 7 
Composite Leather Basketball Designed for Indoor and Outdoor Use, Deep Channel Design for Enhanced 
Grip and Ball Control, Ideal for Training and Competitive Matches;

Text description of each action

Cons: Inefficient;

Pros: The underlying 
distribution aligns with 
that of LLMs



The Rise of Large Language Models
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LLMs are developing so fast recently…

Zhao et al. A Survey of Large Language Models. arXiv:2303.18223

Transformer

2017

O3, R1…

2025



Large Language Models

39

Key features:

- World knowledge.
- Natural language understanding.
- Human-like behavior. 
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Benefits of LLMs for Recommendation

(1) World knowledge - from pretraining 

In space In recommendation

Gurnee et al. Language Models Represent Space and Time. ICLR 2024.
Sheng et al. Language Representations Can be What Recommenders Need: Findings and Potentials. ICLR 2025.



(1) World knowledge 
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Example: SASRec [ICDM’18]

ID-based item modeling 
lack semantic meanings

Benefits of LLMs for Recommendation

Next ID 
prediction

Item IDs

Kang and McAuley. Self-Attentive Sequential Recommendation. ICDM 2018.



(1) World knowledge 
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Benefits of LLMs for Recommendation

Abundant prior 
knowledge about items

Liao et al. LLaRA: Large Language-Recommendation Assistant. SIGIR 2024.



(1) World knowledge 
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Benefits of LLMs for Recommendation

Few data -> a good 
recommender

Bao et al. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. RecSys 2023.
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Benefits of LLMs for Recommendation

(2) Natural language understanding & generation

LLMs can interact 
with users fluently 



(2) Natural language understanding & generation
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Benefits of LLMs for Recommendation

User History

Prediction

Recommendation

Traditional RecSys

Click, like



(2) Natural language understanding & generation
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Benefits of LLMs for Recommendation

Recommendation

Conversation

I would like to 
recommend…

Some scientific 
movies.

Click, like

Conversation

Conversational RecSys



(3) Human-like behavior 
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Benefits of LLMs for Recommendation

Park et al. Generative Agents: Interactive Simulacra of Human Behavior. UIST 2023



(3) Human-like behavior 
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Benefits of LLMs for Recommendation

Offline recommender evaluation

Inaccurate, but 
affordable



(3) Human-like behavior

Online recommender evaluation
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Benefits of LLMs for Recommendation

Accurate, but 
costly



(3) Human-like behavior 
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Benefits of LLMs for Recommendation

Faithful
Affordable
Controllable
…

LLM as user simulator

Zhang et al. On Generative Agents in Recommendation. SIGIR 2024



Part 1: LLM as Sequential Recommender
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(i) Early efforts: Pretrained LLMs for recommendation;
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Early efforts

● Directly use freezed LLMs (e.g., GPT 4) for 
recommendation.
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Early efforts

Prompt Engineering + In-Context Learning (ChatRec)

Gao et al. Chat-REC: Towards Interactive and Explainable LLMs-Augmented Recommender System. arXiv 2303.14524.

Key idea: LLMs as the recsys controller
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Early efforts

Prompt Engineering + In-Context Learning (LLMRank)

Hou et al. Large Language Models are Zero-Shot Rankers for Recommender Systems. ECIR 2024.

Key idea: LLMs as the reranker
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Early efforts

● Directly use freezed LLMs (e.g., GPT 4) for 
recommendation.

● A performance gap compared to traditional 
recommenders exists.
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Early efforts

Hou et al. Large Language Models are Zero-Shot Rankers for Recommender Systems. ECIR 2024.

Sub-optimal performance



Part 1: LLM as Sequential Recommender
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(i) Early efforts: Pretrained LLMs for recommendation;
(ii) Aligning LLMs for recommendation;
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Aligning LLMs for recommendation

TALLRec

Bao et al. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. RecSys 2023.

General task alignment -> Recommendation alignment
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Aligning LLMs for recommendation

TALLRec

Bao et al. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. RecSys 2023.

Good recommender with few training instances



P5
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Aligning LLMs for recommendation

Geng et al. Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). RecSys 2022.

Multi-task

Cross-task 
generalization
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Aligning LLMs for recommendation

InstructRec

Zhang et al. Recommendation as Instruction Following: A Large Language Model Empowered Recommendation Approach. TOIS.

Unify recommendation & search via instruction tuning



Part 1: LLM as Sequential Recommender
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(i) Early efforts: Pretrained LLMs for recommendation;
(ii) Aligning LLMs for recommendation;
(iii) Training objective & inference
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Training objective

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, … Gone with 
the wind. Predict the next movie I will watch: 



(1) Supervised finetuning (SFT)
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Training objective

I have watched Titanic, Roman Holiday, … Gone with 
the wind. Predict the next movie I will watch: 

Waterloo Bridge.

Prediction



(1) Supervised finetuning (SFT)
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Training objective

I have watched Titanic, Roman Holiday, … Gone with 
the wind. Predict the next movie I will watch: 

Waterloo Bridge.

Prediction



(1) Supervised finetuning (SFT)
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Training objective

Always predict the next token



(2) Preference learning
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Training objective

LLMs are trained to align 
human preferences

Recommendation is about 
user preferences



(2) Preference learning

68

Training objective

I have watched Titanic, Roman Holiday, … Gone with 
the wind. Predict the next movie I will watch: 

Waterloo Bridge Harry Potter

Rafailov et al. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. NeurIPS 2023.



(2) Preference learning (S-DPO [NeurIPS’24])
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Training objective

Multiple negativesSingle negative

Chen et al. On Softmax Direct Preference Optimization for Recommendation. NeurIPS 2024.
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Training objective

(2) Preference learning (S-DPO [NeurIPS’24])

Chen et al. On Softmax Direct Preference Optimization for Recommendation. NeurIPS 2024.
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Training objective

(3) Reinforce learning

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. Nature.

Emergent reasoning 
capabilities through RL
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Training objective

(3) Reinforce learning (Rec-R1)

Lin et al. Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning. TMLR.

Ranking metrics as rewards
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Training objective

(3) Reinforce learning (ReRe)

Tan et al. Reinforced Preference Optimization for Recommendation. arXiv:2510.12211.

Ranking rewards + 
rule-based rewards
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Inference

(1) Beam Search

Generating answers with the 
top-k highest scored beams
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Inference

(1) Beam Search

It may generate invalid items

How to ground the LLM outputs 
to real items?
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Water

Bridge

loo fall

War

Valid items: 
Waterloo Bridge, Waterfall 
Story, and Waterloo War

Constrained search tree

Inference

(2) Constrained Beam Search



(2) Constrained Beam Search
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WaterI have watched Titanic, Roman Holiday, … 
Gone with the wind. Predict the next movie 

I will watch: 

P = 1

Inference
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Water

loo fall

P = 0.8 P = 0.2
I have watched Titanic, Roman Holiday, … 

Gone with the wind. Predict the next movie 
I will watch: 

P = 1

Inference

(2) Constrained Beam Search



79

Water

Bridge

loo fall

War

P = 0.8 P = 0.2

P = 0.9 P = 0.1

I have watched Titanic, Roman Holiday, … 
Gone with the wind. Predict the next movie 

I will watch: 

P = 1

Inference

(2) Constrained Beam Search
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Water

Bridge

loo fall

War

P = 0.8 P = 0.2

P = 0.9 P = 0.1

I have watched Titanic, Roman Holiday, … 
Gone with the wind. Predict the next movie 

I will watch: 

P = 1

Valid Item!

Inference

(2) Constrained Beam Search



(3) Improved Constrained Beam Search  (D3)
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Length penalty in beam search;
Human does not like over long sentences.

Inference

Redundant for recommendation

Bao et al. Decoding Matters: Addressing Amplification Bias and Homogeneity Issue for LLM-based Recommendation. EMNLP 2024.



(3) Improved Constrained Beam Search (D3)
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Remove length penalty

Imp when removing

Inference

Bao et al. Decoding Matters: Addressing Amplification Bias and Homogeneity Issue for LLM-based Recommendation. EMNLP 2024.



(4) Dense Retrieval Grounding (BIGRec)
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Inference

Bao et al. A Bi-Step Grounding Paradigm for Large Language Models in Recommendation Systems. TORS.

Retrieve real items by generated text



Part 1: LLM as Sequential Recommender
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(1) Early efforts: using LLMs in a zero-shot setting 

(2) Aligning LLMs for recommendation
(Multi-task) instruction tuning

(3) Training objective: SFT, DPO, RL;

Inference: (constrained) beam search, retrieval;



Application 1: 
LLM as Conversational Recommender
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Conversational Recommender System (CRS)

Chen et al. All Roads Lead to Rome: Unveiling the Trajectory of Recommender Systems  Across the LLM Era. arXiv.2407.10081

● Recommendations with multiple turns conversation
● Interactive; engaging users in the loop



Features: Task-specific conversational recommenders, 
trained on limited conversation data.
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Paradigms of CRS before the era of LLM



Features: Task-specific conversational recommenders, 
trained on limited conversation data.

● Lack of world knowledge.
● Requirement of complicated strategies.
● Lack of generalization capabilities.

88

Paradigms of CRS before the era of LLM



LLM as conversational recommender
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Example

https://www.amazon.com/Rufus/
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LLM as Conversational Recommender

LLMs as zero-shot CRS

He et al. Large Language Models as Zero-Shot Conversational Recommenders. CIKM 2023.

How powerful are LLMs for zero-shot CRS?
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LLM as Conversational Recommender

LLMs as zero-shot CRS

He et al. Large Language Models as Zero-Shot Conversational Recommenders. CIKM 2023.

Can surpass traditional CRSs!
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LLM as Conversational Recommender

LLMs as zero-shot CRS

He et al. Large Language Models as Zero-Shot Conversational Recommenders. CIKM 2023.

Can surpass traditional CRSs!

Towards better LLM-based CRS?
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LLM as Conversational Recommender

+ Demonstration

Dao et al. Broadening the View: Demonstration-augmented Prompt Learning for Conversational Recommendation. SIGIR 2024.

Prompting with 
previously successful 
conversation

Relevant conversation 
history helps!
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LLM as Conversational Recommender

+ Knowledge graph

Qiu et al. Unveiling User Preferences: A Knowledge Graph and LLM-Driven Approach for Conversational Recommendation. arXiv:2411.14459

Recommendation-spe
cific knowledge graph 
helps
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LLM as Conversational Recommender

+ Collaborative information

He et al. Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation. WSDM 2025.

Collaborative information 
(e.g., popularity) helps LLMs 
fit the real distribution in CRS
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LLM as Conversational Recommender

Challenges - Datasets

Public datasets for CRS are limited, due to the 
scarcity of conversational products and real-world 
CRS datasets
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LLM as Conversational Recommender

Challenges - Evaluation

Traditional metrics like NDCG and BLEU are often 
insufficient to assess user experience
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LLM as Conversational Recommender

Challenges - Product

What is the form of LLM-based CRS products?

ChatBot? Search bar? Independent App?
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Application 1:
LLM as Conversational Recommender

(1) LLMs are promising backbone models for CRS

(2) Challenges in LLM-based CRSs:

dataset, evaluation, and product



Application 2:
LLM as User Simulator
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Generative agents for recommendation

LLM as User Simulator

Realworld-like 
simulation paradigm

● 1000 users
● Page-by-page 

simulation

Zhang et al. On generative agents in recommendation. SIGIR 2024.
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Generative agents for recommendation

LLM as User Simulator

Aligned user preferences
& Recommender evaluation

Zhang et al. On generative agents in recommendation. SIGIR 2024.
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AgentCF

LLM as User Simulator

Zhang et al. AgentCF: Collaborative Learning with Autonomous Language Agents for Recommender Systems. WWW 2024.

- Agents for both users and items
- Co-optimized by real 

collaborative filtering signals 
(user-item interactions)

- Memory updated by reflection
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+ Social behaviors

LLM as User Simulator

Wang et al. When Large Language Model based Agent Meets User Behavior Analysis: A Novel User Simulation Paradigm. TOIS 2025.

Recommendation
Chat
Networking
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+ Multi-facet simulation objective

LLM as User Simulator

Zhang et al. LLM-Powered User Simulator for Recommender System. AAAI 2025.

Category matching
Fine-grained similarity
Statistic information



(1) Tokenize actions by text
Pros: distribution naturally aligned with LLMs
Cons: inefficient

(2) From zero-shot to instruction tuning
Training objectives: SFT, DPO, RL, …
Inference: constrained beam search, retrieval

(3) Applications
Conversational RS, User Simulator

106

LLM-based Generative Rec


