02

Large Language Model

-based Generative Recommendation

Action Tokenization

Human-readable Data 👨 👩

Machine-readable Data

Premium Men's Short Sleeve Athletic Training T-Shirt Made of Lightweight Breathable Fabric, Ideal for Running, Gym Workouts, and Casual Sportswear in All Seasons; High-Performance Breathable Cotton Crew Socks for Men with Arch Support, Cushioned Heel and Toe, and Moisture Control, Perfect for Sports, Walking, and Everyday Comfort; Men's Loose-Fit Basketball Shorts with Elastic Drawstring Waistband, Quick-Dry Mesh Fabric, and Printed Number 11 for Professional and Recreational Play; Official Size 7 Composite Leather Basketball Designed for Indoor and Outdoor Use, Deep Channel Design for Enhanced Grip and Ball Control, Ideal for Training and Competitive Matches;

Text description of each action

Cons: Inefficient;

Action Tokenization

Human-readable Data 👨 👩

Machine-readable Data

Premium Men's Short Sleeve Athletic Training T-Shirt Made of Lightweight Breathable Fabric, Ideal for Running, Gym Workouts, and Casual Sportswear in All Seasons; High-Performance Breathable Cotton Crew Socks for Men with Arch Support, Cushioned Heel and Toe, and Moisture Control, Perfect for Sports, Walking, and Everyday Comfort; Men's Loose-Fit Basketball Shorts with Elastic Drawstring Waistband, Quick-Dry Mesh Fabric, and Printed Number 11 for Professional and Recreational Play; Official Size 7 Composite Leather Basketball Designed for Indoor and Outdoor Use, Deep Channel Design for Enhanced Grip and Ball Control, Ideal for Training and Competitive Matches;

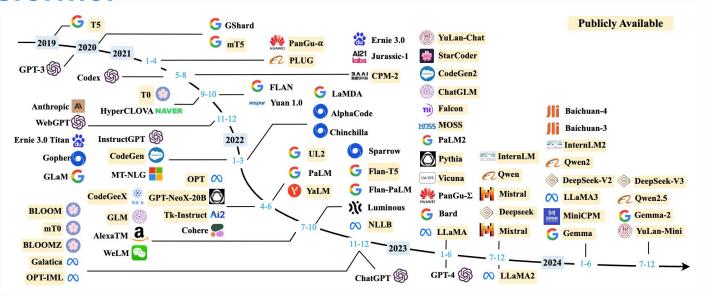
Text description of each action

Action Tokenization

Human-readable Data 👨 👩

Pros: The underlying distribution aligns with that of LLMs

Machine-readable Data


Premium Men's Short Sleeve Athletic Training T-Shirt Made of Lightweight Breathable Fabric, Ideal for Running, Gym Workouts, and Casual Sportswear in All Seasons; High-Performance Breathable Cotton Crew Socks for Men with Arch Support, Cushioned Heel and Toe, and Moisture Control, Perfect for Sports, Walking, and Everyday Comfort; Men's Loose-Fit Basketball Shorts with Elastic Drawstring Waistband, Quick-Dry Mesh Fabric, and Printed Number 11 for Professional and Recreational Play; Official Size 7 Composite Leather Basketball Designed for Indoor and Outdoor Use, Deep Channel Design for Enhanced Grip and Ball Control, Ideal for Training and Competitive Matches;

Text description of each action

The Rise of Large Language Models

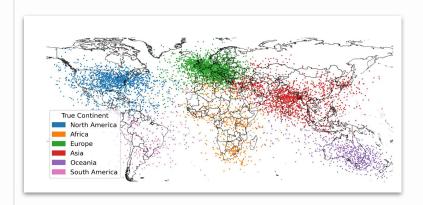
Transformer

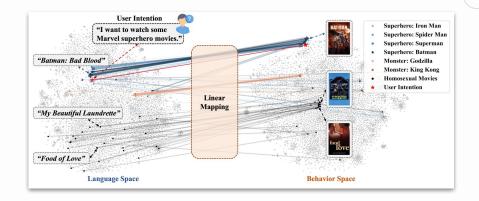
2017

O3, R1...

2025

LLMs are developing so fast recently...

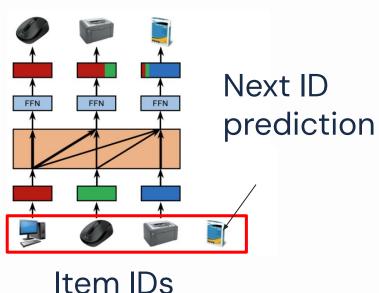

Large Language Models



Key features:

- World knowledge.
- Natural language understanding.
- Human-like behavior.

(1) World knowledge – from pretraining



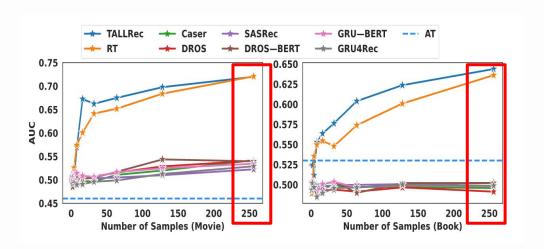
In space

In recommendation

(1) World knowledge

ID-based item modeling lack semantic meanings

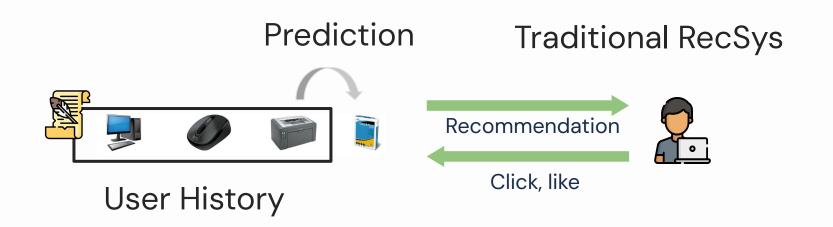
Example: SASRec [ICDM'18]


(1) World knowledge

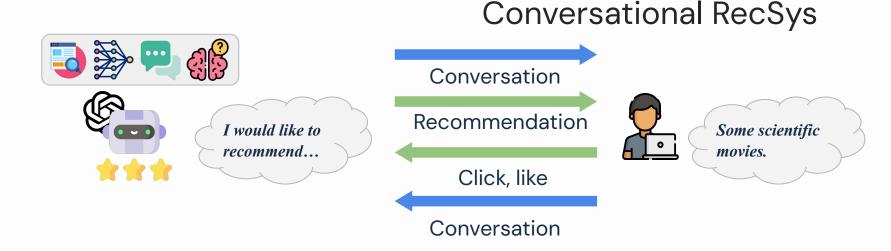
Titanic is a 1997 epic romance and disaster film directed by James Cameron, telling the tragic love story between Jack and Rose aboard the ill-fated RMS Titanic. It blends historical events with fictional drama, becoming one of the most iconic and emotionally powerful films of all time.

Abundant prior knowledge about items

(1) World knowledge


Few data -> a good recommender

(2) Natural language understanding & generation



LLMs can interact with users fluently

(2) Natural language understanding & generation

(2) Natural language understanding & generation

(3) Human-like behavior

(3) Human-like behavior

Offline recommender evaluation

Inaccurate, but affordable

(3) Human-like behavior

Online recommender evaluation

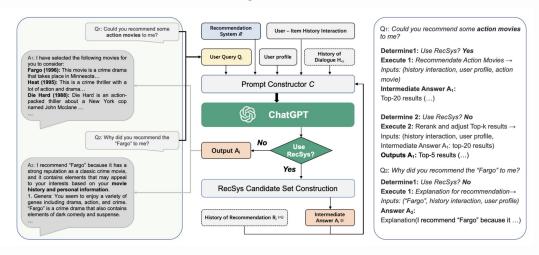
Accurate, but costly

(3) Human-like behavior

LLM as user simulator

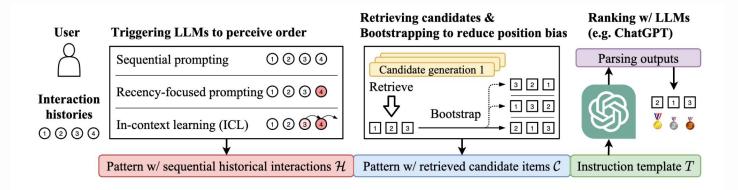
Faithful Affordable Controllable

•••


Part 1: LLM as Sequential Recommender

(i) Early efforts: Pretrained LLMs for recommendation;

• Directly use freezed LLMs (e.g., GPT 4) for recommendation.


Prompt Engineering + In-Context Learning (ChatRec)

Key idea: LLMs as the recsys controller

Prompt Engineering + In-Context Learning (LLMRank)

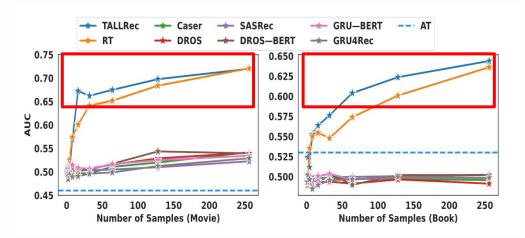
Key idea: LLMs as the reranker

- Directly use freezed LLMs (e.g., GPT 4) for recommendation.
- A performance gap compared to traditional recommenders exists.

Sub-optimal performance

	Method	ML-1M				Games			
	Method	N@1	N@5	N@10	N@20	N@1	N@5	N@10	N@20
full	Pop	0.08	1.20	4.13	5.79	0.13	1.00	2.27	2.62
	BPRMF [49] SASRec [33]	0.26 3.76	1.69 9.79	4.41 10.45	6.04 10.56	0.55 1.33	1.98 3.55	$\frac{2.96}{4.02}$	$\begin{array}{c} 3.19 \\ 4.11 \end{array}$
zero-shot	BM25 [50] UniSRec [30] VQ-Rec [29]	0.26 0.88 0.20	0.87 3.46 1.60	2.32 5.30 3.29	5.28 6.92 5.73	0.18 0.00 0.20	1.07 1.86 1.21	1.80 2.03 1.91	2.55 2.31 2.64
ze	Ours	1.74	5.22	6.91	7.90	0.90	2.26	2.80	3.08

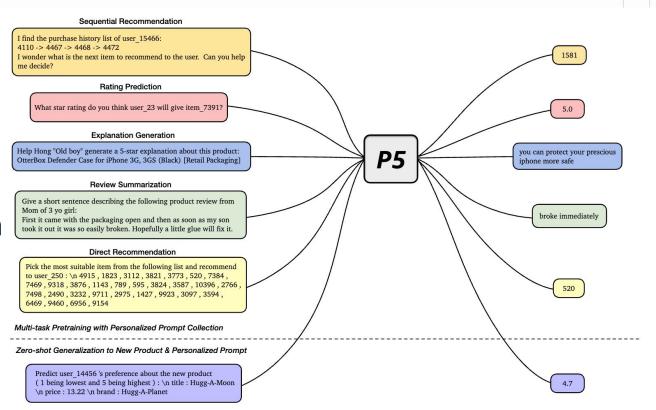
Part 1: LLM as Sequential Recommender


- (i) Early efforts: Pretrained LLMs for recommendation;
- (ii) Aligning LLMs for recommendation;

TALLRec

General task alignment -> Recommendation alignment

TALLRec



Good recommender with few training instances

P5

Multi-task

Cross-task generalization

InstructRec

Table 1: Example instructions with various types of user preferences, intentions, and task forms. To enhance the readability, we make some modifications to the original instructions that are used in our experiments.

Instantiation	Model Instructions	
$\langle P_1, I_0, T_0 \rangle$	The user has purchased these items: historical interactions . Based on this information, is it likely that the user will interact with target item next?	
$\langle P_2, I_0, T_3 \rangle$	You are a search engine and you meet a user's query: <a "="" 10.2016="" doi.org="" href="expl</td></tr><tr><th><math>\langle P_0, I_1, T_2 \rangle</math></th><th>As a recommender system, your task is to recommend an item that is related to the user's <vague intention> . Please provide your recommendation.</th></tr><tr><th><math>\langle P_0, I_2, T_2 \rangle</math></th><th>Suppose you are a search engine, now the user search that <specific Intention>, can you generate the item to respond to user's query?</th></tr><tr><th><math>\langle P_1, P_2, T_2 \rangle</math></th><th>Here is the historical interactions of a user: historical interactions. His preferences are as follows: explicit preference. Please provide recommendations.	
$\langle P_1, I_1, T_2 \rangle$	The user has interacted with the following <a block"="" href="https://www.new.new.new.new.new.new.new.new.new.</td></tr><tr><th><math display=">\langle P_1,I_2,T_2\rangle<td>The user has recently purchased the following historical items. The user has expressed a desire for </td>	The user has recently purchased the following historical items . The user has expressed a desire for

Unify recommendation & search via instruction tuning

Part 1: LLM as Sequential Recommender

- (i) Early efforts: Pretrained LLMs for recommendation;
- (ii) Aligning LLMs for recommendation;
- (iii) Training objective & inference

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

(1) Supervised finetuning (SFT)

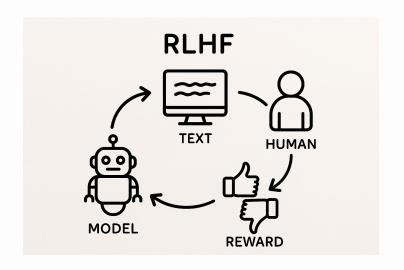
I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

Waterloo Bridge.

(1) Supervised finetuning (SFT)

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:

Waterloo Bridge.


Prediction

(1) Supervised finetuning (SFT)

$$\mathcal{L}_{ ext{SFT}}(heta) = -\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\sum_{t=1}^{T} \log P_{ heta}(y_t \mid y_{< t})
ight]$$

Always predict the next token

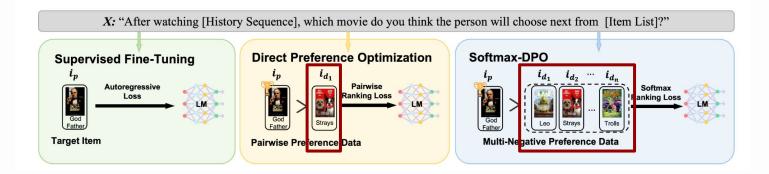
(2) Preference learning

LLMs are trained to align human preferences

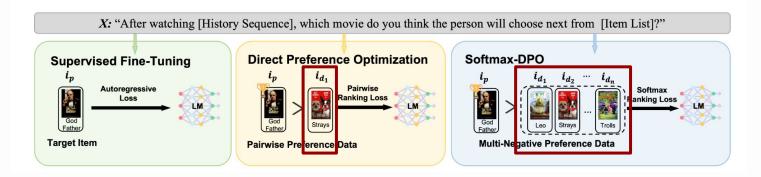
Recommendation is about user preferences

(2) Preference learning

I have watched Titanic, Roman Holiday, ... Gone with the wind. Predict the next movie I will watch:


Waterloo Bridge

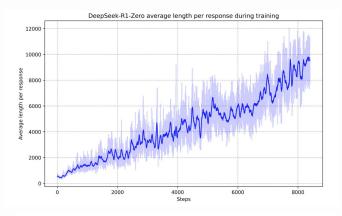
Harry Potter



(2) Preference learning (S-DPO [NeurlPS'24])

Single negative — Multiple negatives

(2) Preference learning (S-DPO [NeurlPS'24])


$$\mathcal{L}_{\text{S-DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x_u, e_p, \mathcal{E}_d) \sim \mathcal{D}} \left[\log \sigma \left(-\log \sum_{e_d \in \mathcal{E}_d} \exp \left(\beta \log \frac{\pi_{\theta}(e_d | x_u)}{\pi_{\text{ref}}(e_d | x_u)} - \beta \log \frac{\pi_{\theta}(e_p | x_u)}{\pi_{\text{ref}}(e_p | x_u)} \right) \right) \right].$$

(3) Reinforce learning

Emergent reasoning capabilities through RL

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}\left[q \sim P(Q), \left\{o_{i}\right\}_{i=1}^{G} \sim \pi_{\theta_{old}}(O|q)\right]
\frac{1}{G} \sum_{i=1}^{G} \left(\min\left(\frac{\pi_{\theta}(o_{i}|q)}{\pi_{\theta_{old}}(o_{i}|q)}A_{i}, \operatorname{clip}\left(\frac{\pi_{\theta}(o_{i}|q)}{\pi_{\theta_{old}}(o_{i}|q)}, 1 - \varepsilon, 1 + \varepsilon\right)A_{i}\right) - \beta \mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right)\right),$$
(1)

$$\mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right) = \frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - \log\frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - 1,\tag{2}$$

Question: If a > 1, then the sum of the real solutions of $\sqrt{a - \sqrt{a + x}} = x$ is equal to

Response: <think>

To solve the equation $\sqrt{a-\sqrt{a+x}}=x$, let's start by squaring both ...

$$\left(\sqrt{a-\sqrt{a+x}}\right)^2 = x^2 \implies a-\sqrt{a+x} = x^2.$$

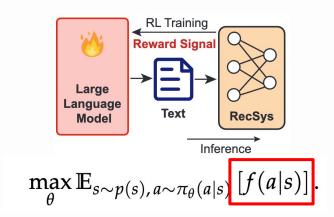
Rearrange to isolate the inner square root term:

$$(a-x^2)^2 = a+x \implies a^2 - 2ax^2 + (x^2)^2 = a+x \implies x^4 - 2ax^2 - x + (a^2 - a) = 0$$

Wait, wait. Wait. That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be \cdots We started with the equation:

 $\sqrt{a-\sqrt{a+x}}=x$


First, let's square both sides:

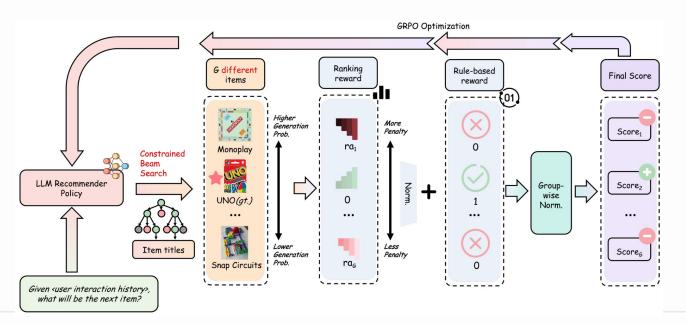
 $a - \sqrt{a + x} = x^2 \implies \sqrt{a + x} = a - x^2$

Next, I could square both sides again, treating the equation: \cdots

...

(3) Reinforce learning (Rec-R1)

Ranking metrics as rewards


Prompt Template for REC-R1 + Dense Retriever (Product Search)

You are an expert in generating queries for dense retrieval. Given a customer query, your task is to retain the original query while expanding it with additional semantically relevant information, retrieve the most relevant products, ensuring they best meet customer needs. If no useful expansion is needed, return the original query as is.


```
Below is the query:
· · · {user_query} · ·
<lim_startl>svstem
You are a helpful AI assistant. You first think about the reasoning process
in the mind and then provide the user with the answer.
endl>
start|>user
[PROMPT as above]
Show your work in <think>\think> tags. Your final response must be in JSON
format within <answer>\answer> tags. For example.
<answer>
  "query": xxx
</answer>.
endl>
start|>assistant
Let me solve this step by step
<think>
```

(3) Reinforce learning (ReRe)

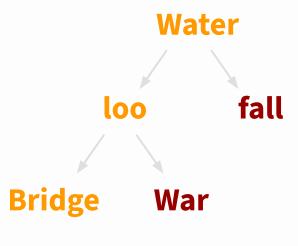
Ranking rewards + rule-based rewards



(1) Beam Search

Generating answers with the top-k highest scored beams

(1) Beam Search


It may generate invalid items

How to ground the LLM outputs to real items?

(2) Constrained Beam Search

Valid items:

Waterloo Bridge, Waterfall Story, and Waterloo War

Constrained search tree

(2) Constrained Beam Search

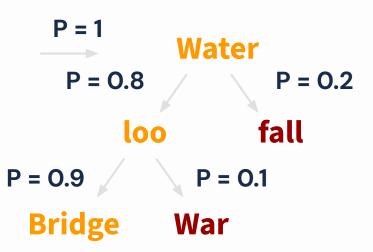
I have watched Titanic, Roman Holiday, ...

Gone with the wind. Predict the next movie
I will watch:

Water

(2) Constrained Beam Search

I have watched Titanic, Roman Holiday, ...


Gone with the wind. Predict the next movie
I will watch:

(2) Constrained Beam Search

I have watched Titanic, Roman Holiday, ...

Gone with the wind. Predict the next movie
I will watch:

(2) Constrained Beam Search

I have watched Titanic, Roman Holiday, ...

Gone with the wind. Predict the next movie
I will watch:

Valid Item!

(3) Improved Constrained Beam Search (D3)

$$S(h_{\leq t}) = S(h_{\leq t-1}) + \log(p(h_t|x, h_{\leq t-1})),$$

$$\mathcal{S}(h) = \mathcal{S}(h) / h_L^{lpha},$$

Length penalty in beam search; Human does not like over long sentences.

Redundant for recommendation

(3) Improved Constrained Beam Search (D3)

$$S(h_{\leq t}) = S(h_{\leq t-1}) + \log(p(h_t|x, h_{\leq t-1})),$$

$$S(h) = S(h)/\mathcal{C},$$

Remove length penalty

	Instruments	Books	CDs	Sports	Toys	Games	
Baseline	0.1062	0.0308	0.0956	0.1171	0.0965	0.0610	
D^3	0.1111	0.0354	0.1190	0.1215	0.1025	0.0767	•
- RLN	0.1093	0.0353	0.1000	0.1200	0.0975	0.0659	
- TFA	0.1086	0.0309	0.1115	0.1192	0.1006	0.0732	

Imp when removing

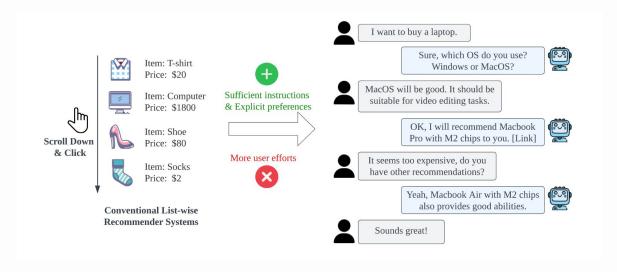
(4) Dense Retrieval Grounding (BIGRec)

Retrieve real items by generated text

Part 1: LLM as Sequential Recommender

- (1) Early efforts: using LLMs in a zero-shot setting
- (2) Aligning LLMs for recommendation

(Multi-task) instruction tuning


(3) Training objective: SFT, DPO, RL;

Inference: (constrained) beam search, retrieval;

Application 1: LLM as Conversational Recommender

Conversational Recommender System (CRS)

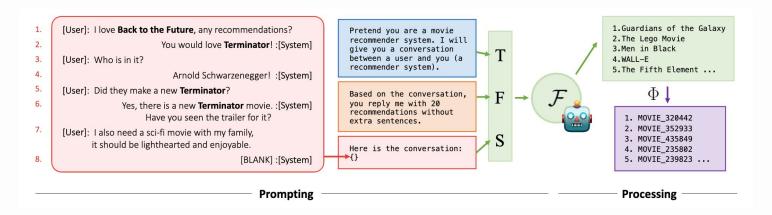
- Recommendations with multiple turns conversation
- Interactive; engaging users in the loop

Paradigms of CRS before the era of LLM

Features: <u>Task-specific</u> conversational recommenders, trained on <u>limited conversation data</u>.

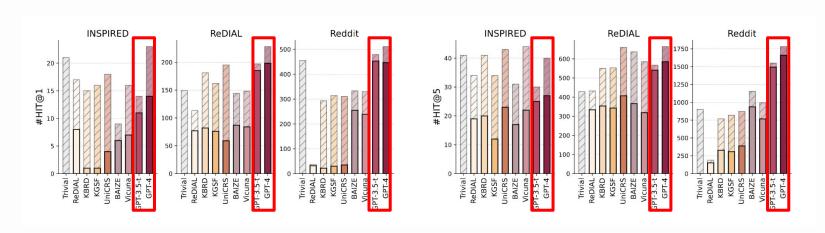
Paradigms of CRS before the era of LLM

Features: <u>Task-specific</u> conversational recommenders, trained on <u>limited conversation data</u>.

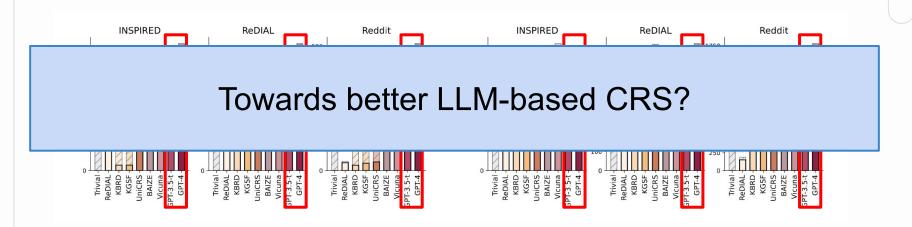

- Lack of world knowledge.
- Requirement of complicated strategies.
- Lack of generalization capabilities.

Example

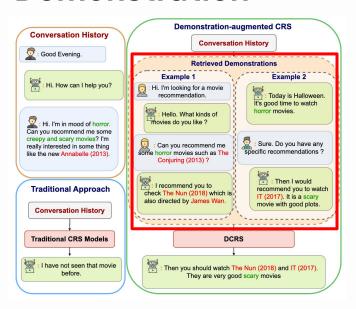
LLM as conversational recommender



LLMs as zero-shot CRS

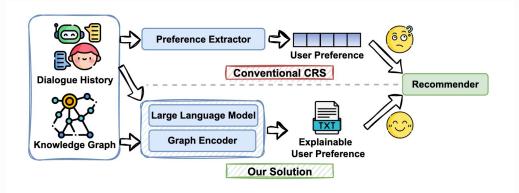

How powerful are LLMs for zero-shot CRS?

LLMs as zero-shot CRS

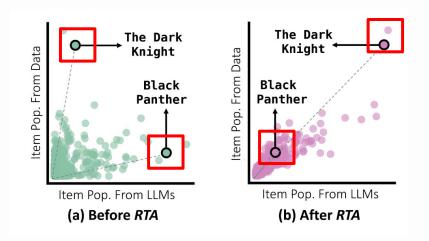

Can surpass traditional CRSs!

LLMs as zero-shot CRS

Can surpass traditional CRSs!


+ Demonstration

Prompting with previously successful conversation


Relevant conversation history helps!

+ Knowledge graph

Recommendation-spe cific knowledge graph helps

+ Collaborative information

Collaborative information (e.g., popularity) helps LLMs fit the real distribution in CRS

Challenges - Datasets

Public datasets for CRS are limited, due to the scarcity of conversational products and real-world CRS datasets

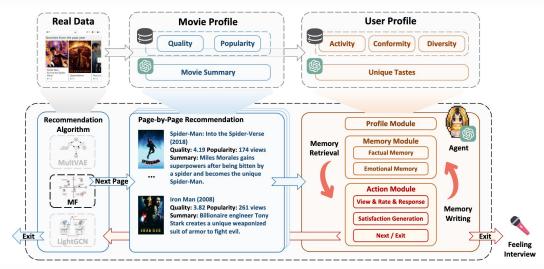
Challenges - Evaluation

Traditional metrics like NDCG and BLEU are often insufficient to assess user experience

Challenges - Product

What is the form of LLM-based CRS products?

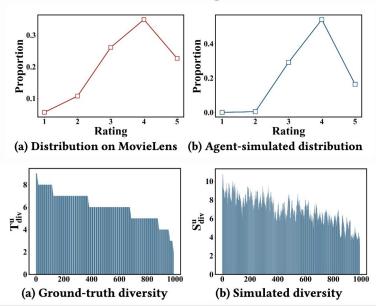
ChatBot? Search bar? Independent App?


Application 1: LLM as Conversational Recommender

- (1) LLMs are promising backbone models for CRS
- (2) Challenges in LLM-based CRSs:

dataset, evaluation, and product

Application 2: LLM as User Simulator


Generative agents for recommendation

Realworld-like simulation paradigm

- 1000 users
- Page-by-page simulation

Generative agents for recommendation

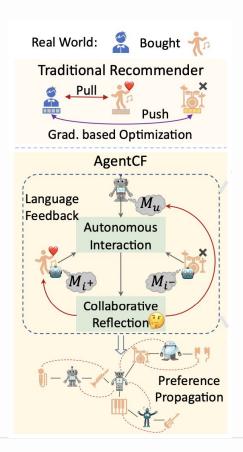
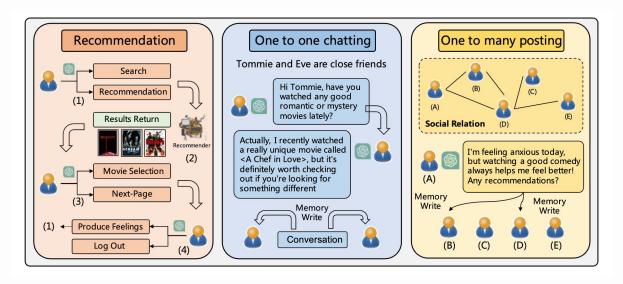
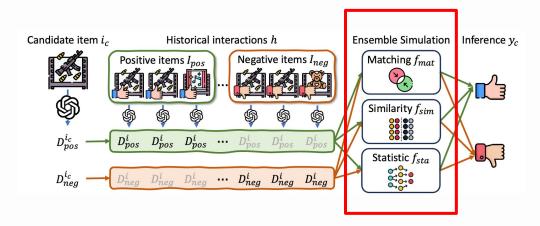

Aligned user preferences & Recommender evaluation

Table 2: Recommendation strategies evaluation.


	\overline{P}_{view}	\overline{N}_{like}	\overline{P}_{like}	\overline{N}_{exit}	\overline{S}_{sat}
Random	0.312	3.3	0.269	2.99	2.93
Pop	0.398	4.45	0.360	3.01	3.42
MF	0.488	6.07*	0.462	3.17*	3.80
MultVAE	0.495	5.69	0.452	3.10	3.75
LightGCN	0.502*	5.73	0.465*	3.02	3.85*

AgentCF

- Agents for both users and items
- Co-optimized by real collaborative filtering signals (user-item interactions)
- Memory updated by reflection



+ Social behaviors

Recommendation Chat Networking

+ Multi-facet simulation objective

Category matching Fine-grained similarity Statistic information

LLM-based Generative Rec

(1) Tokenize actions by text

Pros: distribution naturally aligned with LLMs Cons: inefficient

(2) From zero-shot to instruction tuning

Training objectives: SFT, DPO, RL, ...
Inference: constrained beam search, retrieval

(3) Applications

Conversational RS, User Simulator